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SIMULTANEOUS ESTIMATION OF THE STATE AND NOISE

STATISTICS IN LINEAR DYNAMICAL SYSTEMS¥*

By Paul D. Abramson, Jr.
Electronics Research Center

SUMMARY

An optimal procedure for estimating the state of a
linear dynamical system when the statistics of the measure-
ment and process noise are poorly known is developed. The
criterion of maximum likelihood is used to obtain an optimal
estimate of the state and noise statistics. These estimates
are shown to be asymptotically unbiased, efficient, and
unique, with the estimation error normally distributed with
a known covariance. The resulting equations for the
estimates cannot be solved recursively, but an iterative
procedure for their solution is presented. Several approxi-
mate solutions are presented which reduce the necessary
computations in finding the estimates. Some of the approxi-
mate solutions allow a real time estimation of the state
and noise statistics.

Closely related to the estimation problem is the
subject of hypothesis testing. Several criteria are
developed for testing hypotheses concerning the values of
the noise statistics that are used in the computation of
the appropriate filter gains in a linear Kalman type state
estimator. If the observed measurements are not consis-
tent with the assumptions about the noise statistics, then
estimation of the noise statistics should be undertaken
using either optimal or suboptimal procedures.

Numerical results of a digital computer simulation of
the optimal and suboptimal solutions of the estimation
problem are presented for a simple but realistic example.

*Submitted to the Department of Aeronautics and
Astronautics, Massachusetts Institute of Technology,
on May 10, 1968, in partial fulfillment of the
requirements for the degree of Doctor of Science.
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Chapter 1

INTRODUCTION

1.1 Statement and Discussion of the Problem

Optimal estimation has received considerable attention
in recent years in fields such as space navigation, statis-
tical communication theory, and many others that often
require the estimation of certain variables that are either
not directly measurable or are being measured with instru-
ments that are not sufficiently accurate for an adequate
deterministic solution. In essence the procedures aim at
reducing the effects of random disturbances associated with
these "imperfect instruments.

In many situations, the estimation procedure consists
of no more than averaging repeated measurements of the
"same" quantity made with the same or different instruments.,
In this way, the random errors made in each measurement
might "average out," resulting in a higher confidence in the
value of the quantity being measured than would be the case
if only a single measurement was taken. In this type of
operation, the improved confidence in the estimate depends
upon the fact that the "same"” quantity being measured is
truly time invariant.

In more complex situations, the quantity being measured
might change from one measurement time to another. Suppose
it is known that the voltage across an electrical network

decreases exponentially with time. A simple average of

1
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repeated measurements of the voltage made at different times
would lead to an erroneous estimate. However, if the time
constant associated with the exponential decay is known, then
each measured voltage can be related to the voltage at any
specified time. These computed voltages can then be averaged
to obtain an estimate of the voltage at the specified time.

The examples illustrated above represent the most simple
case of estimation in which each measurement carries the same
weight so that simple linear averaging of the measurements is
performed to obtain the estimate. However, if each measure-
ment has associlated with it a different confidence, usually
characterized by the variance of the measurement error, then
a more complicated estimation scheme must be employed which
takes into account the differing accuracies of the measure-
ments. Typical examples of this situation are: 1) when two
or more different types of instruments are used to measure
the same quantity, or 2) in the case of the previous example
when there is some random characteristic in the exponential
function of the voltage being measured. This leads to a
reduction in the confidence in relating measurements made at
some time distant from the specified time.

Operational or computational procedures involving a
consideration of the variances of the various noises in the
problem represent the first degree of sophistication in
estimation, Various formulations have been advanced which
characterize the statistical nature of the problem in some
orderly pattern. There are two widely used techniques for

optimal estimation when the time variation of the quantity



being measured can be described by a linear differential
equation and when the measurements are linearly related to
the gquantity being estimated. The initial significant work
on this problem was by Wiener (Ref. 36) who developed the
condition to be satisfied for optimal estimation in the least
mean-squared-error sense. This condition is generally
referred to as the Wiener-Hopf integral equation. He also
developed the solution for the case of a time invariant sys-
tem with stationary noise processes. This work and further
extensions and modifications by others are known as Wiener
filters.

In the Wiener filter, the measurement information is
acknowledged to have a signal and a noise component. The
filter, which is usually implemented as a linear analog
filter, is designed so that the noise component of the
measurement is more heavily attenuated than the signal com-
ponent, thus allowing extraction of as much information from
the measurement as is possible. However, non-time stationary,
transient, or multiple input-output problems are difficult
to solve by the Wiener approach.

Kalman (Ref. 16) treated the estimation problem from a
different point of view and formulated the equivalent of the
Wiener-Hopf integral equation as a vector-matrix differential
equation in state space. He developed the solution for a
linear system with normally distributed noises as a set of
vector-matrix difference equations which are commonly termed
the "Kalman filter." Information about the dynamics of the

process being measured, statistics of the disturbances



involved, and a priori knowledge of the quantities being
estimated are included in the formulation of the problem.

In the Kalman filter, the estimation proceeds from any
chosen starting time and is well suited for situations
dominated by a transient mode, such as the launching of a
space vehicle. In the steady state, the Kalman filter can
be shown to be equivalent to a Wiener filter and thus can be
considered as a more general formulation of the estimation
problem. Further advantages of the Kalman filter are that
the computations are performed recursively, in the time
domain, and are readily applicable to nonstationary and
multiple input-output systems. In the standard formulation
of the Kalman estimation procedure, allowance is made for a
variation of the noise variances with respect to time.
However, this knowledge is assumed to be known prior to the
actual filter operation. 1In an operational situation, the
time varying filter gains can be precomputed and stored in
the filter to be used in conjunction with the measurement
information to obtain the optimal estimate. As an estima-
tion procedure of the first degree of sophistication, i.e.,
with the consideration of the noise variances, this is indeed
a very powerful and generally applicable procedure.

Kalman filtering can be thought of as a method of com-
bining in an optimal fashion all information up to and includ-
ing the latest measurement to provide an estimate at that
time, The proper weighting to apply to the new measurement
is determined by the relative "quality" of the new information
as compared to the information contained in the estimate

before the latest measurement. Poor measurements will receive



less weight than good ones. If there is noise driving the
system between measurement times, the filter will weight the
extrapolated value of the o0ld estimate less than if there

were no noise. This is because noise introduces an uncer-

’

tainty in the state of the system between measurement times.
Consequently the estimate will depend less upon old estimates
and more upon new measurements. The appropriate measures of
the "quality" of the old estimate and the new measurement
are respectively the covariance of the old estimation error
and the covariance cf the new measurement error.

These important points can be clarified by considering

the following simple example. Let X represent the scalar

state of a system at time "n. If the system can be described

by a linear differential equation, then the state at time "n

can be related to the state at time "n-1" by the difference

equation

®(n,n-1) is the state transition matrix and extrapolates
the state from time n-1 to time n if the effects of w, are
ignored. Pn is the "forcing function matrix" and W is the
state "driving noise" which is assumed to be a zero mean

uncorrelated normally distributed noise with variance an

~

Let x represent the estimate of X, obtained after

n|n-1

processing n-1 measurements and let P represent the

n|n-1

variance of the estimation error after n-1 measurements,



w

The measurement at time n is given by

where Vo is additive noise representing the error in the
measurement and H is the "observation matrix" which relates
the measurement to the state. In this example, z is a scalar
and Hn = 1. It is assumed that v, is a zero mean uncorre-
lated normally distributed noise with variance Rn'

The scalar Kalman filter equation for incorporating

this new measurement into the state estimate is given by

- — n % + nln—l
nin = R+ Py -1 nln-1 " R+ P

z
n|in-1 n

The variance of the estimation error after incorporation of

the new measurement is given by

R

_ n
Pn]n T R_F¥P
n

24
n]n-l n|n—l

~

If the state estimate Xni is very good compared with

n-1

the information contained in z_ 1 then

P

n|n-1 n
and thus b'd X
n|n n|n-1
and Pn|n Pn]n—l



W

In this case, the measurement datum is effectively rejected
because it is so noisy that it is virtually useless. Since
no new information has been added, the variance of the esti-

mation error remains the same after the measurement.

In the other extreme case, suppose xnl is of very

n-1

poor quality compared with the information contained in z_.

n
Then:
>>

Pnln—l R

and thus X > Z
nin n

and Pnln e Rn
In this case, the estimate Xn|n—l is effectively rejected and

~

the estimate ann is based upon the single measurement Z, -

In all cases falling between these two extremes, the estimate

is a linear combination of the old estimate x and

*n|n n|n-1

the new measurement Z,e

Before computing the proper weighting factors given
above, the variance of the state estimation error before the
measurement at time n must be found. This can be done by
studying how the actual state changes between time n-1 and
time n and how the state estimate changes in this same time

interval. Let x be the estimate of the state xn

n-1|n-1 -1

after the measurement at time n-1l. Since wn is a zero mean

independent random variable, the best estimate of the state



at time n based upon the n-1 measurements is given by

A

xnln—l = ¢&(n,n-1) x

n-1|n-1

If represents the covariance of the estimation

Pa-1|n-1
error at time n-1, it can be seen that

+ F2 Q

2
¢ (n,n-1) Pn—l|n-l n *n

Pn]n—l -
A large driving noise variance will cause a large increase
in the mean squared error in the estimate when it is extra-
polated from one measurement time to the next.
The filter equations given above are for the case of
a scalar state and measurement. In Chapter 2, the more
general case of a vector state and measurement is treated.
However, even in more complicated situations, the same inter-
pretation can be applied to the operation of the filter.
The primary purpose of the filter is to compute and apply
the proper weighting factors so that the new measurement
information can be incorporated with an old estimate of the
state to provide a combined and improved state estimate.
Precise knowledge of the measurement and driving noise
statistics is of fundamental importance in the operation
of a Kalman filter. However, in any operational situation,
the statistics of the noises that are used in the filter
are in fact only estimates or predictions of the statistics
of the noises that will actually be encountered. In some

cases these estimates might be quite accurate, but in other



cases they may be sufficiently 1in error to adversely affect
the filter. One effect of this can be a large discrepency
between the state estimation error covariance matrix as com-
puted within the filter and the "actual"” state estimation
error covariance. If there is a difference between the com-
puted and actual covariance otf the old state estimate, the
filter can make an error in computing the weighting for a
new measurement, This subject 1s treated fully in Chapter 2
but it can be understood by considering the following
example.

Suppose that it is assumed that there 1s no noise
driving the state when in fact driving nolse is present.
Then the computed covariance of the state estimation error
will generally be smaller than the actual estimation error
covariance. This 1s because the driving noise introduces
an error in extrapolating the state estimate from one measure-
ment time to the next which 1s not accounted for in the
computed state estimation error covariance matrix. The filter
"thinks”" it is doing a better job of estimating the state
than is actually the case. If the filter thinks the old state
estimate is much better than it actually is, 1t may assign
little weight to new measurement information and thus
effectively discard this new information. Of course, this
is exactly the wrong thing to do. The old state estimate may
be of very poor quality so that the new measurement informa-
tion should be weighted quite heavily. However, in its igno-
rance, the filter fails to do this and as a result the actual

estimation error may become very large while the filter



"thinks" it is doing a good job of estimating the state.

A similar problem can arise in the case of vector mea-
surements. If the relative quality of the different measure-
ments is not well known, then more weight might be given to
a measurement taken with an inaccurate instrument than to a
very accurate one. This would lead to a greater estimation
error than would be the case if the relative accuracy of the
different measurements was known and the proper weighting
assigned to each.

A priori estimates of the statistics of the noises can
be obtained in several ways. They may be no more than
educated guesses as to what noise environment may actually
exist. It is often very difficult to predict with accuracy
the operating conditions of a complicated and interrelated
system, especially in research and development applications
when little may be known before an experiment is conducted.

Another technique for obtaining the statistics of the
noises is the analysis of previous experiments. These
experiments may have been conducted in an operational envi-
ronment or in the controlled environment of a laboratory.

In either case, it is rarely possible to have complete
confidence in the estimates of the noise statistics due to

the necessarily finite number of experiments that can be
performed and possible problems associated with the inability
to isolate and distinguish the various effects of the different
noises. And there is still a question as to whether the envi-

ronment will remain constant between the time these estimates

10



of the statistics are obtained and when the estimates are
subsequently used in the Kalman filter.

Thus in many situations, the assumption that the a priori
estimates of the statistics of the measurement and driving
noises are good estimates may not be justified. The primary
objective of this work is to develop an optimal estimator of
the state that remains optimal when the statistics of these
noises are not precisely known a priori. In the process of
estimating the state under these conditions, optimal estimates
of the measurement and driving noise statistics are also
obtained.

In developing optimal estimators for the state and noise
statistics, it is not assumed that the statistics of the
noises are known precisely a priori. Instead, it is assumed
that the uncertainty in knowledge of these statistics has a
particular distribution about some a priori value. This is
completely analogous to the usual assumption made in Kalman
filtering that the initial state of the system is not known
precisely, but rather the uncertainty in knowledge of the state
can be described by a suitable probability density function.
In both cases, it is assumed that the distribution of the
uncertainty is known a priori. This represents the second
degree of sophistication is estimation procedures. It
reduces by one level the necessary specification.of the values
of the noise statistics. Instead of having to specify their
exact values, all that need be specified is the possible dis-
tribution these values might have., In fact, it will subse-

quently be shown that the exact shape of this distribution is

11



relatively unimportant when a large number of measurements
has been taken.

The above discussion can be clarified by considering the
following simple example. It will be shown that the a priori
estimates of the noise statistics can be improved at the same
time that the state is being estimated. All measurements
contain some information about the noises as well as the
state, whether these measurements are taken in the laboratory
or in an operational environment. So a procedure can be
devised to utilize this information about the noises actually
encountered to improve our knowledge of the noise statistics.

Suppose the state that is to be estimated is a time

invariant scalar and the measurements of the state are given

by

where x is the constant state and v is a zero mean indepen-
dent normally distributed measurement noise with time invari-
ant variance R. If a single measurement is taken, the optimal

estimate of the state x is given by

LIS

= 2

11 1

and the variance of the state estimation error is given by

P = R

1)1

12



If repeated measurements are performed, it is easy to show
that the optimal estimate of the state after the nth measure-

ment is given by

Thus increasing the number of measurements decreases the
variance of the estimation error by the factor (1/n). Note
that in this simple example, the measurement noise variance
is not needed to define the optimal estimate of the state.
This is a consequence of the fact that if the actual measdre—
ment noise variance is assumed to be time invariant, and if
there is no a priori information about the state, then all
measurements are given the same weight, regardless of the
actual value of R. However, the variance of the state
estimation does depend upon the actual value of R as given
above. In more complicated situations, such as vector mea-
surements or when there is noise driving the state, the
optimal state estimate does depend upon the relative sizes of
the noise covariances involved. But in this case, only the
variance of the state estimation error depends upon R.

If the value of R is unknown, its value can be estimated
from the measurements themselves. In the above case, when the

true state is time invariant, an estimate of R can be defined

by
13



n
~ A 1 ~ 2
R = =1 E: (zj xnln)

It is easy to show that such an estimate is an unbiased

estimate of the noise variance. The expected value of R
n

is given by
n
2 _ 1 > 2
e(R) = =7 Z €[(zj Xn]n) ]
where e( ) represents an average over the ensemble of all

possible measurement noises with covariance R. It can be

seen that

Y]
where b4 = X - X

n
v 1
and xnln =5 }: vk
k=1
n n n
So (z. - ; YU o= vi o+ i 2 E: v, Vv_ - 2 E: v. V
3 7 *n|n 3 %R k Vs T & ;
k=1 s=1 k=1
i 2, _ 1 2 _ n-
and el[(z. - xn|n) ] =R + ™y R = R = = R

In obtaining the above expression, use was made of the indepen-

dence of the measurement noises at different times. Then

14



It can be shown that the variance of the R estimation

error is given by

Thus as the number of measurements increases, the variance of
~N

the noise variance estimation error becomes small and Rn

becomes an arbitrarily good estimate of the actual measurement

noise variance.

With an estimate of R, an estimate of the state estima-

tion error variance can be obtained.

As was mentioned before, in most cases some estimate of the
measurement noise variance is available before the above
measurements are taken. Suppose an estimate of R is obtained
from a series of measurements and it differs from an a priori
value obtained by some other means. Now the question is which
value more accurately represents the variance of the measure-
ment noise, the a priori value or the value obtained from the
measurements. The concepts of relative weighting discussed
in connection with Kalman state estimation offer a solution
to this problem.

There is usually some measure of accuracy associated
with the a priori estimate of R. This measure is often the
variance of possible deviations of the actual value of R

about the a priori estimate. If it is felt that the a priori

15



estimate is highly accurate, the variance about the true
value would be small. Conversely, if it is felt that the
a priori estimate of R is highly inaccurate, the variance
about the true value of R would be large.

A combined estimate of the measurement noise variance

can by defined by

2 2
Rn ) Ro + 2 Rn
oRr + or OR + OR
n o n o]

where RO is the a priori estimate of R, Rn is the estimate

obtained from the measurements, 02 is the variance of the

R
o
true value of R about the a priori estimate, and 0; is the
~ n
variance of the true value about the estimate Rn' oﬁ is
n
given by
~ 2
2 _ 2. _ 2R
op = eL(Ry, = R = 777

In order to compute Oé , the true value of R must be known.
n

However, for moderately large n, the approximation can be made

~2
2 2 R,
R n-1

By analogy to the state estimation problem, a measure

of the variance of the combined estimate of the measurement

noise variance is given by




i

If the a priori estimate Ro is of high accuracy compared

with Rn’ then

and thus
and o]

If the a priori estimate is of low accuracy compared

with Rn’ then

2
°r >” %R
o) n
/\c A
and thus R™ = R
n n
2 . 2
and cRc = OR
n n

In all cases falling between these two extremes, the
estimate ﬁg is a linear combination of the a priori estimate
and the estimate obtained from the measurements.

Of course, the situation is not always as simple as in
the previous example. The state may be a time-varying vector
with additive driving noise. The measurements may be vectors
indicating that several measurement devices of possibly
differing accuracies are used to measure the state at any time.

In such cases, the problem is simultaneously estimating the

state and the noise covariances becomes much more complicated.
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The resulting equations for optimal estimates of the state

and noise statistics are generally coupled nonlinear equations
that must be solved by some numerical procedure. But the
essence of the problem is the same. From the information con-
tained in the measurements taken in an operational environ-
ment, improvements can be made in the estimates of not only
the state but also the statistics of the measurement and
driving noises. The performance of the state estimator in
such a situation can be improved compared with the estimator
that uses incorrect values of the noise statistics in com-

puting the appropriate filter gains.

1.2 Historical Background

Optimal state estimation when the statistics of the
measurement and driving noises are poorly known is but one
class of problems within the more general area of state esti-
mation in the presence of "modeling errors." 1In the formula-
tion of the Kalman filter, it is assumed that the dynamics of
the system can be accurately modeled as a set of linear
differential or difference equations with precisely known
coefficients. This is reflected in the value of the state
transition matrix that is used to extrapolate the state
estimate from one measurement time to the next. In fact,
the modeling of the system might involve approximations.

The number of state variables that are necessary to accurate-
ly model the system might be so great that the number of
computations needed to estimate all of the variables becomes

prohibitively large. Often the number of computations can be
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eew wy including only the most significant state vari-
ables in the filter model. This will reduce the complexity
of the filter but can introduce additional errors in the
estimation of the reduced number of state variables.

It may not be possible to model the system dynamics by
any set, no matter how large, of linear differential equa-
tions. The motion of the state might be described by a set
of nonlinear differential equations which can only be
approximated by a set of linear differential equations
describing the motion of the system about some nominal path.,
This too can introduce errors in the state estimation that
are not accounted for within the model,

There are other sources of modeling error. The elements
of the state transition matrices used within the filter may
not be accurately known. The actual measurements may be a
nonlinear function of the state although it was assumed in the
derivation of the filter equations that the measurements are
a linear function of the state. These nonlinearities may not
be highly significant but they can cause additional state
estimation errors.

All of these "modeling errors," including inaccurately
known noise statistics, can result in a degradation of the
Kalman filter performance.

Many authors have studied the problem of optimal esti-
iation and control of a linear plant whose parameters may

ot be accurately known. A comprehensive list of references
1 this subject would be prohibitively long. For this

:ason, the only works cited here are those that have some
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bearing on the problem of optimal state estimation in the
presence of modeling errors.

Spang (Ref. 34) has studied the problem of optimal
control of a linear plant with unknown coefficients under
the'assumptions that there is no measurement noise and the
statistics of the noise driving the state are precisely
known. He also assumes that the uncertainty in knowledge
of the coefficients describing the plant have some distribu-
tion of values that can be represented by a probability
density function of coefficient values. The optimal control
signal which minimizes a quadratic error measure is obtained
by finding the conditional mean of the system tracking error,
conditioned upon the actual measurements of the system but
averaged over the distribution of all possible plant
coefficient values. In this way, the error is minimized
over the ensemble of all possible trials with systems whose
parameters vary in a fashion described by the assigned proba-
bility density function. No attempt is made to estimate the
actual plant coefficients. Although Spang is concerned
primarily with optimal control, several of the concepts he
develops have direct application to optimal state estimation
when the parameters of the system are unknown.

Drenick (Ref. 8) has also studied this problem. He
also assumes that the uncertainty in the parameters of a
linear plant can be described by a probability density
function whose first two moments are known. His optimal
control signal minimizes the conditional mean squared

tracking error and is a function of the measurements on the
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system and the first two moments of the parameter distribu-
tions. However, using his procedure, there is no way to
estimate the values of the unknown system parameters except
in a very restricted set of problems.

Magill (Ref. 21) takes an interesting and rather unique
approach to the problem of optimal state estimation when
certain statistical parameters of the problem are unknown.
These parameters, called the parameter vector, are assumed
to come from a finite set of values that are known a priori.
The optimal estimator is composed of a set of Kalman type
state estimators, with each filter using one of the finite
number of parameter vectors to compute the proper measure-
ment gains. The outputs of the filters are weighted and
added, with the weighting of each filter output being deter-
mined by the conditional probability that the parameter
vector being used in that filter is the true parameter vector.
These conditional probabilities are functions of the mea-
surements and are obtained by relatively simple but nonlinear
calculations.

The following works are primarily concerned with
obtaining relatively simple and easy-to-use procedures rather
than finding an "optimal" solution to the problem. The
approaches to the problem are gquite different but there is
one common feature. This feature is the real time examina-~
tion of measurement residuals to determine if a Kalman type
state estimator is performing as predicted. The measurement
residual is defined as the difference between an actual

measurement and the predicted measurement, this prediction
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being based upon the predicted state at the time of the

measurement. If the measurement at time n is given by

2z =H x +v
n n
and xn|n—l is the estimate of the state X, before the
measurement z_, then the measurement residual is defined by

A

Az =z - H x
n n n “n|n-1
If there are no modeling errors, it is easy to show that
Azn is a zero mean random variable with covariance

T
n|n-1 n

e(Az_ Az]) = R+ H_ P
where Rn is the covariance of the measurement noise Vo and
Pnin—l is the covariance of the state estimation error before
the nth measurement.

Jazwinski (Ref. 15) has suggested introducing into the
model of the dynamics of the system a zero mean random driving
noise which in some sense can account for the effect of any
modeling error. However, the covariance of this noise is
not known a priori since it is not known what modeling
errors are actually present. Jazwinski proposes a simple
and reportedly effective procedure for determining how much
"driving noise" to introduce into the model based upon an

examination of a single residual at a time. If the squared

residual is much larger than predicted by the filter, the
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computed covariance of the old state estimate is artificially
increased at that time so that the new measurement is
weighted more heavily than would be the case if no adjustment
was made. In this way possible divergence problems in the
filter are minimized because as soon as the residuals become
large, indicating that there is an error in the model, the
measurements are weighted heavily. This tends to reduce the
estimation error to a level consistent with that predicted

by the filter.

No attempt is made to estimate the value of the
covariance of the added driving noise since in fact it does
not exist. It was included to account for any unknown
modeling errors. Even if the covariance is estimated,
such an estimate would have little statistical significance
since it would be based upon an examination of a single
measurement residual. So Jazwinski's procedure should be
viewed as an attempt to reduce the effect of modeling errors
on the filter operation rather than an attempt to improve
our knowledge of the model.

Dennis (Ref. 5) addresses himself to a more compli-
cated problem, that of estimating the effects of errors in
modeling the dynamics of the system as well as estimating
the covariances of the measurement and driving noises. Only
his procedure for estimating the statistics of the noises is
of interest here.

Dennis develops expressions for a real time estimator
of the measurement and driving noise covariances. The

estimates are subseguently used in the computation of the
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appropriate weighting gains in a Kalman state estimator.
Dennis' solution for the estimation of the noise statistics
is suboptimal in the sense that no optimality criterion is
used in defining these estimates. The expressions were
obtained by an examination of the characteristics of quadratic
functions of certain measurement residuals. From this
examination a reasonable, if not optimal, estimator is
postulated. However, in many useful applications there are
several problems associated with the use of this estimator.
It is not always possible to estimate all of the unknown
elements of the measurement and driving noise covariance
matrices. Depending upon the dimension and nature of the
measurement, some or all of the elements of the driving
noise covariance may not be observable, and as a result, a
singular situation is created. There are also certain
situations when the estimators may be biased and result in
estimates that do not converge to the true values of the
noise covariances as the number of measurements becomes
large. Dennis does not develop expressions for the evalu-
ation of the quality of the noise covariance estimates. Such
measures of quality would be needed if it is desired to
incorporate the estimates obtained from the measurements
with some a priori estimates to obtain a combined estimate
based upon a priori knowledge of the noise covariances and
the information contained in the measurements.
Shellenbarger (Ref. 31) is exclusively concerned with
estimating the values of the measurement and driving noise

covariances so that the proper gains can be computed for
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estimating the state. His technique is aimed at finding an
approximate solution to this problem and consequently his
estimator for these parameters is suboptimal. He bases his
estimates of the noise covariance parameters upon an examina-
tion of a single measurement residual at a time. If the
measurement is of small dimension compared with the number

of covariance parameters being estimated, there is no

unique solution for all of the noise covariance parameters.
In addition to this, there is also a gquestion of a possible
bias in the noise covariance estimator,

The work of Smith (Ref. 33) is even more restricted in
that he attempts to estimate only the measurement noise
covariance, assuming that the dynamical model of the state
and the covariance of the driving noise are known precisely.
His work results in a suboptimal estimator for the state
and measurement noise covariance. Here too there is a
gquestion of a possible bias in the noise covariance estimator.

Because of the relevance of noise covariance estimation
to this work, a short review of the procedures of Dennis,
Shellenbarger, and Smith is included in Chapter 4. Although
their procedures are suboptimal and there are problems asso-
ciated with implementing their estimators in certain cases,
it is felt that there are some situations when these estimators
provide an adequate solution to the problem of inaccurately
known noise statistics. Their procedures are much simpler
that the optimal procedures developed in Chapter 3 and provide
some insight into the variety of techniques that are available

for an approximate solution to the problem.
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1.3 Summary of Thesis

As was previously mentioned, the primary objective of
this thesis is the development of an optimal estimator of
the state and statistics of the measurement and driving
noises. However, several other related subjects are also
treated.

In Chapter 2, it will be shown that a biased or corre-
lated measurement or driving noise can be estimated using
a linear recursive filter identical in form to the usual
Kalman filter for estimating the state. This is a conse-
gquence of the fact that such a biased or correlated noise is
observable in terms of a linear function of the measurements.
It will also be shown that an error in the values of the
measurement and driving noise covariances used to compute
Kalman filter gains does not produce an observable effect
in a linear function of the measurements. Therefore, any
estimator of these covariances is inherently a nonlinear
estimator since a nonlinear function of the measurement is
needed in the estimation loop. In the simple example given
previously, it was shown that an estimator for the measure-
ment noise variance is a quadratic function of the measurements.

Initially an attempt was made to formulate the problem
of noise covariance estimation in terms of minimum variance
estimation, but the nonlinearities in the problem immediately
produced great analytical difficulties. This is one of the
reasons why the criterion of maximum likelihood was chosen
to define the optimal estimates of the state and the noise

statistics. As the name might imply, maximum likelihood
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estimates are the most probable values of the state and
statistics for a given set of measurements. The techniques
of maximum likelihood result in complicated equations, but
the theory of maximum likelihood estimators is sufficiently
developed to allow a proper handling of the problem.

The points of maximum likelihood are found by setting
the derivatives of a suitable likelihood function to zero
and then solving the resulting equations for the unknown
parameters. There is a likelihood eguation associated with
each parameter being estimated. When the noise covariance
matrices are assumed to be time invariant, the solution of
the likelihood equations for the optimal state estimate is
just a Kalman type estimator which uses the optimal estimates
of the noise covariances to compute the appropriate filter
gains. Unfortunately, there is no general closed form
solution of the likelihood equations for these optimal noise
covariance estimates. However, an iterative procedure is
proposed for the solution of the likelihood equations corre-
sponding to the estimates of the noise covariances. These
estimates are shown to be asymptotically unbiased, efficient,
consistent, and unique, with the estimation error normally
distributed with a known covariance.,

In addition to the optimal solution discussed in
Chapter 3, several suboptimal solutions of the problem are
given in Chapter 4. These solutions can result in a major
savings in the computational requirements but they do not

have the wide range of applicability of the optimal solution.

27




i 4

Chapter 5 is devoted to a discussion of hypothesis testing.
Hypothesis testing is closely related to the estimation problem.
Certain criteria are developed for making decisions as to
whether observed measurements are consistent with assumptions
about the statistics of the measurement and driving noises.
However, the tests themselves do not allow a determination of
the reasons the measurements fail a particular hypothesis
test, but rather indicate that there is some error in the
model of the system and/or measurement. The tests can
usually be conducted at less computational expense than a
more complicated noise covariance estimation procedure, so
they can be used to determine if such additional estimation
should be conducted.

In Chapter 6, the numerical results of a computer simu-
lation of the theoretical results are presented. The optimal
and suboptimal estimators are simulated to study their perfor-
mance in a simple but realistic situation. The techniques
of hypothesis testing are also studied to find the power of
certain tests in detecting errors in the values of the noise

statistics used within a Kalman filter.
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Chapter 2
EXPECTATION OPERATORS AND

MAXIMUM LIKELIHOOD ESTIMATION

2.1 Introduction

In this chapter two types of expectation operators are
defined and maximum likelihood parameter estimation discussed.
A precise understanding of the expectation operator notation
is necessary for subsequent work, so important definitions
and results are given here. The maximum likelihood equations
are utilized to establish the notation and results of the
familiar linear state estimation problem with and without
the use of a priori information about the state. The question
of unbiasedness and the covariance of the state estimate in
the presence of inaccurately known noise statistics is also
discussed. More general parameter estimation problems and a
more detailed examination of the properties of maximum likeli-

hood estimators are treated in Chapter 3.

2.2 Conditional and Unconditional Expectation Operators

Let x and y be random variables (possibly vector valued)
with joint probability density function f(x,y) defined over
the range -« < x,y < ., The conditional expectation, or mean,

of x, conditioned upon the value of y is defined by

e(xly) éj x £(x|y) dx (2.2.1)

(oo}
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where f(x|y) is the conditional probability density function

of x given y. Define

>

£ (x) f f(x,y) dy

£ (y) éf £(x,y) dx

o

Applying Bayes' rule,

f(x|y) = £%%§¥L (2.2.2)

The unconditional expectation of x is defined by

E(x) A Jr x f(x) dx
= Jr X jr f(xry) dY] dx
LS r oo
= Jr X Jf f(x|y) £(y) dy| dx
[e e} [eo}
= Jr [Jr x £(x|y) dx] f(y) dy
=[ e(x|y) £(y) dy (2.2.3)
The first expectation, e(x|y), is the expected value of

x if y were fixed at the conditioned value. It is found by
averaging over all other random influences with a constant
value of y. The second expectation, E(x), is the expected

value of x which represents an average over the distribution
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of y as well as over all other random influences.

The conditional covariance of x is defined by

li>

cov (x|y) e((x - e(x|y)) (x - E(X|y))T|y)

£ (x ley) - e(x|y) e(xT]y) (2.2.4)

i

The unconditional covariance of x is defined by

E((x - E(x)) (x = E(x)) ")

>

cov (x)

E(x xT) - E(x) E(x7) (2.2.5)

But E(cov(x|y)) E(x x7) - E(e(x|y)e(x"|y))

= cov(x) + E(x) E(x7) - E(e(x|y)e(xT|y))
T T
and cov(e(x|y)) = E(e (x|y)e(x " |y)) - E(x) E(x")
so cov(x) = E(cov(x|y)) + cov(e(x|y)) (2.2.6)

Thus the unconditional covariance can always be decomposed
into the sum of two components: 1) the average conditional
covariance and 2) the covariance of the conditional average.

The use of the conditional and unconditional expection
operators in this work is somewhat unconventional because the
random variables y may represent the parameters of the

probability density function of x. It is not usual to think
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o of the parameters of a probability density function as them-
selves being random variables. However, in situations where
it is desired to estimate the values of these parameters on
the basis of observed values of a random variable x, by con-
sidering y to be a random variable any a priori information
about the value of y can be utilized coherently in forming an
a posteriori estimate of the value of y. It may not seem
legitimate to regard the value of y as itself being the
outcome of a random experiment. Usually it is more natural

to regard y simply as a fixed, though unknown, constant which

appears as a parameter in the x distribution from which sample
values are taken. However, if this approach is used, there

is no way to utilize a priori information about y and accord-
ingly the performance of the estimator would be degraded.

In the extreme case when no a priori information about y
exists, then introduction of the concept of an initial
distribution for y would be unjustified and of no practical
use., In the other extreme case when it is assumed that the
parameters are known precisely a priori, then the probability
density function of y would reduce to impulses at the known
values of the parameters. However, in such a situation, in
the absence of any other random influences on y, there would
be no need for the entire estimation process since it is
assumed that the values of y are known. 1In all cases falling
between these two extremes, by introduction of a realistic if
not precisely correct density function for y, the realities
of the situation can be more closely modeled than by consid-

ering that the parameters y are either exactly known or
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completely unknown a priori.

The above discussion can be illustrated by a simple
example. Let x by a normal variable with mean m and variance
s, with conditional probability density function f(x|m,s).
Furthermore let m and s be random variables with a joint
probability density function f(m,s). For simplicity it is
assumed that s and m are independent, so f(m,s) = f(m) f(s).

The conditional mean of x is

Jf x £(x|m,s) dx

e(x|m,s) =
1 -1/206 - m)?/s]
But f(x|m,s) = — 173 °©
(27s)
so e(x|m,s) = m independent of s

The unconditional mean of x is

E(x) = [fe(x]m,s) f(m,s) dm ds

f m £ (m) am & ®

o

The conditional variance of x is

2 ® 2
e((x - m)“|m,s) = (x - m)° £(x|m,s) dx = s
The unconditional variance of x is

E((x - 5)2) = J[[ e((x - ﬁ)zlm,s) f(m,s) dm ds
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ff (s + m? - m%) £(m) £(s) dm ds

-—CO

=T +m? - w2

f s f(s) ds

m2 4 Jr m2 f(m) dm

[oe]

2|
>

where

Note that E((x - 5)2) # E((x - m)2) unless m2 = m-.

2.3 Maximum Likelihood State Estimation

In this section the theory of maximum likelihood estima-
tion is discussed and applied to the estimation of the state
of a linear dynamical system which is driven by white noise
and observed by linear noisy measurements. Because of the
relative simplicity of the equations for determining the state
estimate, much can be said about the performance of the
estimator. In more complicated situations, such as estimating
the covariance of the measurement and driving noises,
evaluation of the estimator behavior is considerably more
difficult and requires a more thorough analysis. For this
reason the discussion of these situations is deferred until
Chapter 3.

Maximum likelihood estimation, as the name might imply,
is concerned with finding the maximum of a likelihood function
defined as a function of the parameters being estimated and
the measurements on the system. Let Z denote the realized

values of a set of measurements and aT = (al, az,..,am) be
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the vector of parameters belonging to a set of all possible
parameter values . Further, let f(Z|a) denote the conditional
probability density function of the measurements Z given the
value of the parameter o. The likelihood function is then

defined by
1(a, Z) = £(z]|a) (2.3.1)

The principle of maximum likelihood consists of accepting

aT = (al, az,.., um) as the estimate of aT, where

l(&,Z) = max 1{(o,Z) (2.3.2)
o

~

There may be a set of samples for which o does not exist.
Under suitable regularity conditions on f(Z|a), the frequency
of such samples can be shown to be negligible.

In practice it is convenient to work with the natural

logarithm of 1(a,Z), in which case a in (2.3.2) satisfies the

equation

L(a,Z) = 1In 1(a,2) = max L(a,32) (2.3.3)

o
When the maximum in (2.3.3) is attained at an interior point
of £, and L(a,Z) is a differentiable function of a, then the

partial derivatives wvanish at that point, so that o is a

solution of the equation

aa

___.aL(OtrZ))A -0 (2.3.4)
o
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Equation (2.3.4) is called the maximum likelihood equation
and any solution of it a maximum likelihood estimate. The
function & defined by (2.3.3) over the sample space of
observations Z is called a maximum likelihood estimator.

If a priori information about the parameters being
estimated exists and if the a priori uncertainty in knowledge
of these parameters can be formulated as an a priori proba-
bility density function for o, then a slightly different
likelihood function can be defined so that this a priori
information can be used in an optimal fashion. In such cases,
the augmented likelihood function is defined by

Bla,z) = £(a]2) (2.3.5)

1
where f(a|Z) is the conditional probability density function
of the parameters a given the measurements Z. By application
of Bayes' rule it can be seen that

£(z]a) £(a)

flafz) = =gy

where f (o) is the a priori probability density function of a

and f(Z) is the unconditional probability density function

of Z, found by
£(z) = J( £(Z|a) £(a) da
f

In this case the logarithm of the augmented likelihood
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function (2.3.5) is

12(0,2) = 1n 1®(a,2) = 1n £(2|a) + 1n £(a) - 1n £(2) (2.3.6)

312 (0,2) _ 3L(a,2)

and 2 + 91n £ (o)

o 20, 90

(2.3.7)

The inclusion of a priori information about o has a tendency
to shift the zero points of (2.3.7) towards the peak of the
a priori parameter density function. If a priori information
about o exists, it is usually preferable to utilize the formu-
lation f(alz) since this allows utilization of all informa-
tion about the value of a, both from the a priori information
and information derived from the measurements Z, However, it
should be realized that if the assigned a priori probability
density function of the parameters does not accurately repre-
sent possible variations in the parameters, the performance
of the estimator may in fact be degraded by inclusion of a
priori information. When studying the performance of an
estimator, there is some justification for looking first at
an estimator which does not utilize a priori information.
This allows determination of how effectively a given esti-
mator extracts information from the measurements without
considering how this estimate might be incorporated with an
a priori estimate to obtain a combined estimate.

In the derivation of the maximum likelihood state esti-
mation equations, it is first assumed that a priori informa-
tion about the state does exist so that the latter form of

the likelihood function is employed. After the solution of
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this problem is obtained, the equations for estimating the
state without a priori information will be given.

Both solutions of the state estimation equations should
more correctly be called conditional maximum likelihood
estimates because the optimality of such estimates is condi-
tioned upon the assumption that the noise driving the state
and corrupting the measurements of the state have a known
distribution with precisely known parameters. If this
assumption is not valid, then the state estimates are no
longer the true maximum likelihood estimates and all guaran-
tees of optimality are lost.

The purpose of this section is to establish certain
results and notation which will be needed in later chapters.
An excellent reference on the subject of maximum likelihood
state estimation is by Rauch (Ref. 26).

Let the linear dynamical system being observed be
defined by the recursive relationship

x, = d(k,k-1) x + T, w (Bx1l vector) (2.3.8)

k k-1 k 'k

and the linear noisy observations upon the system at time k

be defined by

(yx1 vector) (2.3.9)
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where d(k,k=1) is the BxRB state transition matrix

H, is the yxB observation matrix

k
Pk is the Bxn forcing function matrix
x is the nxl driving noise vector

k

is the Yxl measurement noise vector
For this derivation it is assumed that Vi and w, are indepen-

dent zero mean normal random variables with known covariances

Rk and Qk respectively. Using the notation of Section 2.2,

e(vk) = e(wk) = 0 (2.3.10)
T, _ T, _ T, _
e(vkvj) = Rk ajk' e(wkwj) = Qk Sjk’ s(vkwj) =0 (2.3.11)
where 6., = 1 if j = k and is zero otherwise.

jk
The above conditional expectation operators are conditioned
upon the assumed values of the means and covariances of the
noises as well as their assumed independence.

Given the vector of n measurements Zg = (ZT""'ZE) and
an independent a priori estimate of the initial state, maxi-
mum likelihood estimation of the state X is based upon
finding the particular value of the state which maximizes the
conditional probability density function of the state, given
all measurements of the state. Implicit in the definition of
the likelihood function is that all values of Rk and Qk’
k=1,..,n, be known precisely, as well as the covariance of

the a priori state distribution, the elements of the state

transition matrices, the observation matrices, and the
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forcing function matrices. To indicate this dependence of
the likelihood function on these parameters, some of the para-
meters will appear as conditioning variables in the condi-
tional likelihood function. This choice of parameters to
thus indicate is motivated by the work of Chapter 3, when the
values of certain parameters are to be estimated.

It is convenient to work with the natural logarithm of

the likelihood function.
A
L (x ,Z ,R,Q = In f(x |2 ,R,Q) (2.3.12)

where R and Q represent the known sequence of values
Rl’°"Rn’Ql""Qn’ the measurement and driving noise
covariances.

The conditional probability density function of the state

is found by use of Bayes' rule.

f (xn’ ZnIRrQ)
f(xn]anRlQ) = f(Zn,R,Q)

B f(znlzn_l,xn,R,Ql f(anl,xn,R,gl
f(znl Zn_llR’Q) f(Zn_lerQ)

f(anzn_lIanRlQ)

£(x_|Z__-,R,Q) ——7 (2.3.13)
n!'“n-1 f(anZn_l,R,Q)

Il

On any one trial, the initial state X is not a random
variable but assumes a certain value. However, this value is
not precisely known. To model this uncertainty in the value

of the initial state, xO is assumed to be a random variable
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(over the ensemble of all possible initial conditions) having
a normal probability density function f(xo) with mean §6 and
covariance about the mean Po|o' This distribution is presumed
to be known a priori. The a priori state estimate is taken

to be the mean of this distribution. Because of the symmetry
of f(x,) about its mean, §6 is also the point of maximum

probability of the distribution.
~

E(xo) = X,
el(x -X ) (x_-X )71 =P
o o’ *Po To olo
x L% the a priori state estimate
olo o

The averaging here is performed over the ensemble of all
possible initial conditions and is conditioned upon knowledge

of xO and Polo'

~

Let xnin—l be the maximum likelihood estimate of x

immediately before the nth measurement and let Pn| be the

n-1

conditional covariance of x  about its conditional mean X n-1°

A

~ ~

_ _ _ T
Paln-1 ~ el (x, xnln—l)(xn xn|n—l) |Zn—l’R'Q]

The averaging here is over the ensemble of all possible
measurement and driving noises and initial state conditions,
all conditioned upon the values of R and Q. It can be shown
that before the update at time n, the conditional proba-

bility density function of X is
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-1/2 P -
£(x_(Z__1,R,Q) = /200 %0 n-1) Faln-1 ¥ 00 ] (2.3.14)
n|“n-1'"" 8/2 172 . 3.
(2m) IPn]n-l|
From (2.3.9) z, = ann + v

Since v is a normally distributed variable, independent of
xn, and xn is also a normal variable, then z, is a normally

distributed variable with conditional mean

e(anZn_l,xn,R,Q) = e(zn‘xn) = H X

and conditional covariance

T _ T _
el ~H x ) (z -H X ) |Zn_l,xn,R,Q] = e(vnvn|R) = R

Therefore the conditional probability density function of z, is

I e—l/2[(zn—ann)TR;l(zn—ann)]
f(z_|z__.,Xx_,R,Q) = ‘ — (2.3.15)
n' n-1'""n (ZW)Y/2|Rn!l/2

and from (2.3.12) and (2.3.13)

~

*n|n-1

-1 ~

T
) Pn|n—l(xn—xn|n—l)

i

A
Ln(xn,Zn,R,Q) constant —l/2[(xn

T -1
+ (zn—ann) Rn (zn—ann)] (2.3.16)

where "constant" includes all terms that are not functions

of x_.
n
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The maximum likelihood estimate of X is that value of

. o s A
xn which maximizes Ln’ or makes

aLﬁ‘)
—= o =0 (2
an Xn + X |n
It can be seen that
A
oL ~
n _ _ _ T - ~ T -1
T (% Xn]n—l) Poln-1 % (z~Hp%n) Ry Hy (2

Then after some manipulation, the solutjon of (2.3.17) is

-1 > T. -1

. -1 T -
n|n-1*n|n-1 * HoRyZn) (2

*nln © (Pn|n—1 + H Ry

1 -1
Hn) (P

Upon using the matrix inversion lemma (see Appendix A)

~ ~ ~

+ An(zn - Hy Xn|n—l) (2

n|n - ann—l

uY) L (2

where A =P
n|n—l n

T
n n1p—l Hn(Rn * HnP

An is called the optimum gain to the measurement residual

(z - H x
n n

).

n|n-1

.3.17)

.3.18)

.3.19)

.3.20)

.3.21)

The conditional probability density function of X after

the nth measurement can be shown to be

~ T —l N
f(x_|z_,R,Q) = € liZ[(XH XQJE) _Pnln(%n ann)] (2
R (ZW)B/zanlnll/z
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where Pnln is the conditional covariance of xn about Xn[n

after the nth measurement. It can be shown that

_ -1 T -1 1
Pn|n - (Pnln—l + Ry H)
= (I - AH)P (I -AH)T +ARAT (2.3.23)
nn’ n|ln-1 n'n n'n n ©oe
The necessary quantities for computing xn]n can be
obtained recursively from the estimate at the previous time.
ann_l = <I>(n,n—l) Xn_lln_l (2.3.24)
p = ¢(n,n-1)P ¢T(n,n-1) + I Qo I'T (2.3.25)
n|n-1 ! n-1|n-1 ! n*n'n i

It should be noted that the above recursive state
estimation equations are identical to those obtained by Kalman
(Ref. 16) using the method of orthogonal projections and
Iee (Ref. 20) using the method of weighted least squares.

It is also easy to show that the state estimate is that esti-
mate which minimizes the conditional covariance of the state

estimation error at each stage of estimation.

If no a priori information about the state is used, the

logarithm of the likelihood function is defined by

Ln(xn,Zn,R,Q) = 1n f(zn]xn,R,Q) (2.3.26)

where f(Zn|xn,R,Q) is the joint conditional probability

density function of the measurements Zn given X, R, and Q.
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By application of Bayes' rule
f(Zn|xn,R,Q) = f(Zn_l|xn,R,Q) f(znlzn_l,xn,R,Q) (2.3.27)
By repeated application of Bayes' rule, it can be shown that
n
£(z_|x ,R,Q) = i7=Tl £(z; |25 _,%,/R,Q) (2.3.28)
It can be anticipated that until a sufficient number of

measurements have been taken, the state estimate cannot be

defined and there is no unique solution of the likelihood

equations
3L (x_,2_,R,Q) 31n f(z2_ix_,R,Q)
n""n""n""’ nI n’"’
~ =|— ~ =0 (2.3.29)
X oX
n X_*X n X_+X
n “nln n “n|n

The problem is conveniently broken into two parts, obtaining
a minimal data set and then subsequent recursive estimation
using the equations previously derived. A minimal data set
is defined as the smallest set of measurements that is
necessary to completely define the state. That is, for
n < some n_, there is no unique solution of the likelihood
eqguations for the state X,-

The derivation of the estimation equations when no
a priori information is used is considerably more complicated
than the case previously studied when a priori information
was used. Only the results of the derivation will be pre-
sented here. Fraser (Ref. 10) obtained the same equations

given below using the criterion of minimum covariance.
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Prior to obtaining a minimal data set no unique estimate
of the state exists so an auxiliary variable must be intro-

duced. Define

aN A

Ynln = Fn]n xﬁln (2.3.30)

~ ~

Yn|n-1 = Tn|n-1 *n|n-1 (2.3.31)

~ ~

1 ) . . . -
where xn|n and Xn|n—l are the state estimates obtained with

out a priori information and Fn|n and Fn|n—l will be subse-

guently defined. It can be shown that a unique y

~

n|n and

yn]n—l exist at all times, but only if Fn|n and Fn|n-l are
of full rank and possess inverses do unigque x' and x'
n|n n|n-1
exist.
Recursive equations for yn|n’ Fn|n’ yn|n—l’ and Fn|n—l
can be obtained with initial conditions
Yolo ~ 0
F =0
olo
Subsequently,
v =1 -crY oT(n-1,n) v (2.3.32)
n|n-1 n'n ! n-1|n-1 *oe
o _ T -1
ynln = yn[n—l + Hn Rn z (2.3.33)
F =s_- s8I p.irts (2.3.34)
n|n-1 n n‘n'n n°n T



_ T.-1
Fn|n = Fnln_l + Han Hn (2.3.35)
where s_ = @T(n-l n) F ¢ (n-1,n)
n ' n-1|n-1 ’
p. =0t +rfs T
n n n'nn
c =s_r ot
n n'nn
It can be shown that Fn|n-l and Fn|n are equal to the

inverse of the state estimation error covariance matrix
th .
before and after the n measurement respectively. For

n<n_,

o Fnln is singular, implying that some or all elements

of the error covariance matrix are infinite, this in turn

implying that some or all of the elements of the state cannot

be estimated on the basis of the measurements taken. However,
once a minimal data set is obtained, the state estimate xﬂ n
can be obtained from the equation below.

= F_ (2.3.36)

X1:1|n Fn|n Yn|n
Subsequently, the usual state estimation equations (2.3.20)
and (2.3.24) can be used with the solution of the minimal
data set (2.3.36) used as the initial state estimate and
F;In used as the covariance of the initial state estimation
error,

The solution of the state estimation problem with no

a priori information can be thought of as the limiting case

-1

OlO >0. In

of the solution with a priori information as P
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other words, the covariance of the a priori estimation error

distribution becomes arbitrarily large and in the limit

becomes infinite.

information

This is equivalent to having no a priori

about the state.

The state estimate obtained using a priori information

can be shown to be completely equivalent to a linear combi-

nation of the state estimate obtained without use of a priori

information

and the propagated forward initial state estimate.

~

+ Fn| (2.3-37)

n|o n X£|n)

is the combined state estimate

is the state estimate obtained without

a priori information

is the propagated forward initial state estimate

~

xn|o = ¢(n,0) Xo|o

is the covariance of the propagated forward

initial state estimation error

n
. T T .
P + E:@(n,l)PiQiPiQ (n,1i)

i=1

_ T
nlo = @(n,O)POIOQ (n,O)

is the covariance of the a priori state distribution

is the covariance of the combined state estimation

error
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-1
njo

-1

P (p

+ Fn|n)

njn

This result is also equivalent to setting the initial

conditions on Yolo and F to P_

1 -1 \
o|oxo|o and Po|o respectively.

olo
It can be shown that in most situations (when the state
is completely observable by the measurements and controllable

by the driving noise) that as n - <,

-1

P
n|o

P + 0

n|n

"N A

in which case ann - Xﬂln
Thus as would be expected, for large n, the effect of any
initial state estimate will become arbitrarily small.

If the true values of R and Q are not known precisely,
then the measurement information cannot be processed optimally.
Let R* and Q* represent the assumed value of the sequences

~ %
R and Q, ann

represent the state estimate after n measure-
* *
ments using R and Q to compute the measurement residual
*
gain matrices, and Pnln represent the "computed" state

covariance matrix. Then

Nk _ ~ % * N~k 3

ann = ann—l + A (zn - annln-l) (2.3.38)
* * * * T * % _ &

P = (I - A H )P (I - A H) + A R_ A (2.3.39)
n|n nn’ n|ln-1 n 'n n n'n
x T, _* * T, -1

AL = Bpy qHR(RD 4 H PO HD) (2.3.40)
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~ %k

Xnla~1 = 2071 Xy 0o (2.3.41)
* = ¢ 1 P* @T 1 T .k]_"’II 42
Ppjn-1 = 2@m-DIPy g g O (en=l) + TO T (2.3.42)
*
Pnln represents the conditional state covariance matrix after

the nth measurement, conditioned upon the assumption that

R = R* and Q = Q*. If this assumption is not valid, then
P*|n does not accurately represent the state covariance
matrix. It can easily be shown that the actual conditional
covariance matrix can be computed recursively using the

following equations.

T

_ * * T * *
Pn'n = (I - Aan)Pn,n_l(I - Aan) + An Rn An (2.3.43)
P = &(n,n-1)P oY (n,n-1) + T_ o TIY (2.3.44)
n|n~1 ! n-1|n-1 ! n “n 'n "

Pn]n represents the state covariance matrix under the
assumptions that R* and Q* are used to compute the filter
gains (2.3.40) while the true values of the noise covariances
are R and Q. If the initial state covariance is presumed to

* *
be known, then P Unless R=R and Q = Q , P

= P .
oo o|o n|n

will not be equal to P;|n' Depending upon the values of
R, R*, Q, Q*, this deviation can be very significant. Numeri-
cal results of a computer sgimulation of these equations for
a particular system are given in Chapter 6.
Because of the linearity of the maximum likelihood

equations in the state estimation problem, a strong statement

50



can be made about the distribution of the estimation error.
From the form of the state estimation equations it can be
seen that if the initial state distribution is normal as well
as the measurement and driving noises, then the state estimate
is also a normal random variable. In order to completely
specify the distribution of the estimation error, the mean
and covariance of the distribution must be determined.
Conventionally, an estimator is said to be unbiased if
over an ensemble of trials the expected value of the state
estimate is equal to the expected value of the state. Impli-
cit in this definition is averaging over the probability
density functions of the measurement and driving noises as
well as averaging over the ensemble of all initial conditions
of the state. Even if incorrect values of R and Q are used
to compute the measurement residual gain matrices, the
state estimate remains unbiased in the above sense as long
as the measurement gains are fixed numbers and are not
random functions of the outcomes of the measurement process.
The conditional expected value of the state estimate
(2,3.38) can be computed recursively.

~ A

E(X:n|n) = €(xnln—l

~k

*
) + e[An(zn - ann]n—l)] (2.3.45)

*
Under the assumption that An is not a random variable under

the expectation operator,
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*
= -A H e(%
nn

h n %k _ %
where ann_l = ann_l - Xn

But from (2.3.41)

E(Xrlln"l) - (n’n"'l) €(xn"'l|n_l) (2.3.46)
Since e(xn) = ¢ (n,n-1) e(xn_l)
~ %k _ n %

and s(xnln_l) = e(xn) + E(xnln—l)

h ) = * 1) ex”

then e(xnln = s(xn) + (I - Aan) ®(n,n-1) E(xn—l|n—l)

Repeating the above procedure, it can be shown that

- = 7T * . nk
a(xn|n) = e(x ) + [i=l (I-A H;) ®(i,i-1)] s(xolo) (2.3.47)
. vk ~
With e(x IO) = e(xolo - xo)
and xo[o = e(x_)
n*
then s(xolo) =0
~ %k
and elxy ) = elxy) for all n (2.3.48)
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This result is independent of the values of R, R*, Q, Q*.
The maximum likelihood state estimate remains unbaised for
any values of R* and Q*, but the covariance of such an esti-
mate is a function of these quantities as expressed by
(2.3.43) and (2.3.44). Thus it can be seen that over the
ensemble of trials with all possible initial conditions,
measurement noises, and driving noises, the state estimation
error is zero mean normally distributed with covariance

P , for any n.

n|n
Now the gquestion is asked: Is the state estimate

biased over the ensemble of trials with the same initial
conditions? Or in other words, if the initial state were
fixed and one averaged the estimate over all measurement

and driving noises which might be experienced, would the
state estimate be biased? The answer is yes if a priori
information about the state is used and the initial state

is different from the initial estimate. This can be shown
in a fashion analogous to the previous work. Now all condi-

tional expected values are additionally conditioned upon the

value of X1 the initial state. From (2.3.47),

~ %k n * .. nx
e(xnln|xo) = e(xn|xo) + [gZi(I—AiHi)Q(l,l—l)]s(xo§o o
n*x ~k
Now e(xolo|xo) = 8[(xolo - xo)|XO]
~ %k
= x - X
olo o
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~

as averaging is not performed over X Unless x_ = x

o olo’ then

~ R
e(xn]n[xo) A oex |x))

The bias of the estimator is due to the use of a priori infor-
mation in the estimator. If no a priori information is used,
it is easy to show that

*

£(x Ixo) = e(xn[xo) = & (n,0) X

n|n
However, even if initial information is used, as n becomes
large the bias due to initial condition error becomes arbi-

— ~ %
trarily small. On the average, X, = X, = xo|o and the

o
estimator is unbiased as shown before. But over the ensemble
of all possible trials with the same initial conditions, the
estimate is only asymptotically unbiased. However, the dis-
tribution of the estimate about this possibly biased value can
be shown to be normal for any n.

A slightly different definition of unbiasedness is used
in Chapter 3 in the discussion of maximum likelihood estima-

tors of more general parameters. There, an estimator o of

the true value of the parameters o is said to be unbiased if

e(&n[uo) = ag

where a, is the true value of o. This definition is really
appropriate in situations when no a priori information about

the parameters is used so that the parameter estimate is a
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function of the measurements alone. However, the asymptotic

behavior of the estimator will be shown to be independent of

the a priori estimate so that this definition is useful even

if a priori information is used in obtaining the estimate.
Using this definition of unbiasedness, the maximum likeli-

hood state estimate is unbiased if

~ %
e(x

n|n|xn) =%

n

Using a procedure similar to that used to obtain (2.3.47) and

(2.3.49), it can be shown that

~ % n * 0 (i i 1 Lk
e(xn|n|xn) = e(xn|xn) + [;z;(I_AiHi) (i,i- )]e(xolo]xn) (2.3.50)
n% %k
But E(xo|olxn) - e[&o|o - xo)|xn]
= Xo|o - &(0,n) X
and e(x_|x ) = x
n'“n n
Unless xo|o = @(O,n)xn, the maximum likelihood estimator is

biased. But as before, if one looks at the asymptotic
behavior of the estimator or studies an estimator which does

not use a priori information about the state, then

%
€ (x

n|n|xn) =%

n

and the estimator is unbiased.
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Now the question is asked: What is the effect of
possible biases in the measurement and driving noises and
what can be done to estimate these biases? In such a

situation, the system state is given by the relationship

X, = @(n,n—l)xn_l + Fn(wn + B) (2.3.51)

where as before W is a zero mean random variable with
covariance Qn, with W independent of Wy for k # n. Bw is a

constant bias independent of W with
e(Bw) = 0
e®_ BY) =o¢
W ow
These conditional expected values are taken over the ensemble

of all possible driving noise bias values. It is usually

assumed that over the above mentioned ensemble, BW is normally

distributed with zero mean and covariance og .
W
The measurement z, is given by
z, = Hn xn + v + BV (2.3.52)

where as before v is a zero mean random variable with
covariance Rn, with Vo independent of Vi for k # n. BV is a
constant measurement bias independent of Vi and the driving

noise bias Bw’ with
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]
(=]

e(BV)

T
e(BV BV)

il
Q

These conditional expected values are taken over the ensemble
of all possible measurement noise bias values. Again it is
usually assumed that B, is normally distributed.

If the state X, is estimated with the effects of these

~k
biases neglected, then the state estimate xnln

is computed
using (2.3.38) and (2.3.41l), with the "computed" covariance
matrix given by (2.3.39) and (2.3.42). It is assumed that
the values of R and Q used to compute these matrices and the
measurement residual gains are the correct values. Now
however, the state estimate will not be an optimal estimate
and P:|n will not correspond to the actual state estimation

error covariance because of the neglected biases.

From (2.3.51) and (2.3.41l) it can be seen that

n,x

Y
ann-l = ¢(n,n-1) x

n-1|n-1 " r (w + B)) (2.3.53)

Then the actual state estimation error covariance matrix

before the measurement at time n is given by

* R

(% )
©¥nln-1*n|n-1

Pn|n-l =

2 T

e — T —
= & (n,n l)Pn—lIn—IQ (n,n-1) + Pn(Qn + on)Tn (2.3.54)
n % T * T
- @(n,n—l)e(xn_lln_le) - e(Ban—lln-l)Q (n,n-1)
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So in order to compute P the correlation between the

n|n-1’
. » L] 3 i i '\J*
driving noise bias BW and the state estimation error xn—l]n—l

must be determined. This will be done subsequently.

From (2.3.52) and (2.3.38) it can be seen that

n, %

nk %
X
n nln—l)

xn|n = ann—l (2.3.55)

*
+ An(vn + BV ~- H

Then the actual state estimation error covariance matrix

after the measurement at time n is given by

* kT
x
n|in “n|n

P = s(% )

n|n

~ * 2 T
= Pnin—l + An(Rn + OBV + HP .1 H, (2.3.56)
o T, _ kT T, _*T _ T _*T
Hy e(xn|n—le) e (B xn]n—l)Hn) 2, Pn!n—lHn Ay
* A n% T * *
A e(Bvxnln—l) * E(xnln—le) By AnfnPnin-1

*

V]
The correlation between Bv and Xn|n—

1 must be determined in

order to evaluate P l .
nin

Mulitiplying (2.3.53) by BV and performing the condi-

tional expected value,

n% * T

T n
E(ann—le) = ¢(n,n-1) E(Xn-l|n-le) (2.3.57)
since it is assumed that B, is independent of W and Bw'
(¥", BT) ana e(X", BY) b ted sivel
£ Xn]n ) and e xnin w) can be computed recursively.

Multiplying (2.3.55) by Bv and performing the expected value,
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i T
e (x
n|n

Multiplying

*
e(X | BY)
nln"w

since B__ is
w

(2.3.53) it

%

e(xnln lB

So (2.3.59)

% T
E(Xn|an)

2
(I - A H ) E(ann lB ) + A UBV (2.3.58)

2
n-1|n- 1BY) + Ay °B,

(I - A H ) ®(n,n-1) e(x

(2.3.55) by BW and performing the expected value,

T

=(I—AH)€(xn|nlw

) (2.3.59)

assumed to be independent of Vi and BV. But from
can be seen that
) = &(n,n-1) e (% BY) - I o2 (2.3.60)
n- l|n-l w a "B,
becomes
* @ 1 B
= (I - Aan) (n,n-1) E(Xn 1|n-1 w)
* I" 2
(I Aan) n on (2.3.61)

It is assumed that the initial state estimation error is

independent of B

w and BV so the initial conditions on (2.3.57)

and (2.3.61) are

Using an analysis similar to that previously given,

n*

vk T
e (x

€ (x B) =0

BY) =
olo v

olo “w

it

can be shown that across the ensemble of all possible initial
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state conditions, measurement and driving noises, and
measurement and driving noise biases, the state estimate gzin
is unbiased. However, if the biases are present, the actual
state estimation error covariance matrix is no longer accu-
rately represented by len but rather by Pn]n as given above.

If there is a possibility that biases may be present in
the measurement or driving noises, then it is usually prefer-
able to estimate their values so that their effect upon the
state estimator is diminished. This can easily be accomplished
within the framework of maximum likelihood state estimation
already established.

Define a new state variable

T _ ,,T _T _T
s, = (xn, Bw' Bv) (2.3.62)
and a new state transition matrix
¢(n,n-1) Pn 0
¥Y(n,n-1) = 0 I 0 (2.3.63)
0 0 I
and a new forcing function matrix
T
n
Kn = 0 (2.3.64)
0
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Then the augmented state S, obeys the recursive relationship

s, = ¥(n,n-1) Sh-1 t Ay ¥, (2.3.65)

Define a new observation matrix

Gn = (Hn, 0, 1) (2.3.66)

Then the measurement z is given by

z =G_8s_ + v (2.3.67)

Now the problem is reduced to exactly the same form as
the case when the noises were zero mean except that now the
state vector is of increased dimension and includes all possi-
ble noise biases. The estimator for the augmented state Sh
can be formulated in exactly the same way as before with

initial conditions

This says that the a priori estimates of the biases should
always be zero since, if they were nonzero, they could be
removed with the residual uncertainty in the bias values
then zero mean.

The covariance of the initial augmented state estima-

tion error is given by
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P 0 0
o|lo
VY S 2
Eo[o = E(solo solo) 0 OBw 0
0 0 o2
B
- V]

where Pb[o is the covariance of the unaugmented state estimate,

62 is the covariance of the driving noise bias, and op is

B
w v
the covariance of the measurement noise bias.
Thus the augmented state can be estimated using the

same form of the equations as for the unaugmented state with

the substitutions

If the true covariances of the random parts of the noises
as well as the covariances of the bias parts of the noises
are known precisely and used in the filter, then it can be
shown that En|n accurately represents the covariance of the
augmented state estimation error, and the filter .is optimal
in a minimum covariance or maximum likelihood sense.

If instead of the measurement and driving noises having
a bias, they have a component which is correlated with past
noises, then a slightly different approach must be used.

Only a limited type of correlation is easily treated so the
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following definitions are made.

It is assumed that the state obeys the relationship

x = 0(n,n-1) x o + T (w + wg) (2.3.68)
where Y is uncorrelated zero mean noise such that
e(w_ wi) = Q_ 6, (2.3.69)
n j n jn
and wg is correlated zero mean noise such that
e (WS w?T) = o, e =31/ (2.3.70)
It is

T, is the "correlation time" of the driving noise.
also assumed that wo and wg are mutually uncorrelated so that

c —
e(wn wj) =0 (2.3.71)

The correlated noise wg can be generated by considering
wg to be composed of two parts.

-1/t
_ ¥ W c
woo= W + (e ) LAY (2.3.72)

*
where w, 1s a zero mean random noise that is independent of
all past noises with

~2/T
T Q. (1L -e

e(w; v Wy (2.3.73)

)
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It is easy to show that the correlated noise defined by
(2.3.72) has the proper correlation between the noises at

different times as given by (2.3.70).

It is also assumed that the measurement z is given by

- c
z, = Hn X, + Vo + v (2.3.74)

where vn is uncorrelated zero mean noise such that
T
e(v vj) = R_ 4. (2.3.75)

c . .
and vn is correlated zero mean noise such that

- |n-j|/T
c _cT, _ | v
z-:(vn vj ) = Rc e (2.3.76)
T, is the "correlation time" of the measurement noise. It is
again assumed that Vi and vg are mutually uncorrelated with
the further assumption that all measurement noises are
uncorrelated with all driving noises.

Again it is convenient to define the correlated measure-

ment noise by

) vo (2.3.77)

*
where v is a zero mean random noise that is independent of
all past noises with

s(v; v:T) =R (1L - e vy (2.3.78)



It is easy to show that the correlated measurement noise
defined by (2.3.77) has the proper correlation between the
noises at different times as given by (2.3.75).

It should be noted that when the correlation time of
the noises becomes very large, the correlated noises approach
constant biases, whereas as the correlation times become
small, the noises become uncorrelated.

If it is assumed that the state X, is estimated neglect-

~ %k
ing this correlation, the state estimate xnln is computed

using (2.3.38) and (2.3.41), with the "computed" covariance

matrix given by (2.3.39) and (2.3.42). Again X will not

n|n

*
be an optimal estimate and Pn]n will not correspond to the
actual state estimation error covariance matrix because of
the neglected correlation in the noises.

From (2.3.68) and (2.3.41) it can be seen that

n% ok c)

Xn|n—l = ¢(n,n-1) x - T (w_ + W (2.3.79)

n-1|n-1 n' 'n

Then the actual state estimation error covariance matrix

before the measurement at time n is given by

= ®(n,n-1)P 8T (n,n-1) + r_(_ + QC)FE (2.3.80)

Pnln-1 n-1|n-1

* cT

ET
n-1|{n-1"n

c ¥ T N T
Tne(wn Xn—lln—l)¢ (n,n-1) -%(n,n=-1l)e(x )Fn

the correlation between the driving

. c . . nx
noise w. and the state estimation error xn—l|n-1 must be

In order to compute Pnln-l’
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computed. This will be done subsequently.

From (2.3.74) and (2.3.38) it can be seen that

n% _ n % * C _ n%*
Xn]n = xn[n—l + Al (vn + v H Xn|n-l) (2.3.81)

Then the actual state estimation error covariance matrix after

the measurement at time n is given by

T

* T-a"H )T + A" R )A 2.3
Pn[n - (I—Aan)PnIn—l( AHD T+ ARy + RIA, (2.3.82)

* cT)A*T

+ AnE(annln—l)(I Aan) + (I Aan)a(xnln_lvn a

. v .

The correlation between vg and ann-l must be computed in
order to evaluate P .
n|n

Multiplying (2.3.79) by vg and performing the conditional

expected value

v cT Wi cT
E(Xn[n—lvn ) = &(n,n-1) E(xn—l]n—lvn ) (2.3.83)
since it is assumed that vi is independent of wgo But using
*
(2.3.77) plus the independence of Vo
-1/t
W cT, _ v v cT
E(Xn—l|n—lvn ) = (e ) E(Xn-l]n—lvn—l) (2.3.84)
Similarly it can be seen that
-1/1
e cT, _ w i cT
€(Xn—l|n—lwn ) = (e ) E(Xn_lln_lwn_l) (2.3.85)
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n, %

e(xn l|n— ) can be computed recur-

wCT
1) and E(Xn 1|n-1%n-1
sively. Multiplying (2.3.81) by vg and performing the

expected value,

e(xn aVn ) =T - A H ) e(xnln 1Vn ) + A R (2.3.86)
_ * —l/T n,%
= (I-Aan) ¢ (n,n-1) (e ) e(xn 1|n-1 n—l)
*
+ A R
n c

Multiplying (2.3.81) by wg and performing the expected value,

W cT * v* cT
e(xn|n w_") (T Aan) E(Xn|n—l W ) (2.3.87)

= (I—A*H ) ¢(n,n-1) e(x WCT) - T _Q
n'n n-1|n-1 "n n “c
= (I—Aan) ®(n,n-1) (e ) E(Xn l|n 1 wn l) ~-T Q

It is assumed that the initial state estimation error
is uncorrelated with the measurement and driving noises, so
the initial conditions on the recursive equations (2.3.86)
and (2.3.87) are
cT

*
ng)=s(§ w_ ") =0

%
e{x
olo "o

olo

By analogy with the estimation of possible noise biases,
it is possible to estimate the correlated part of the measure-

ment and driving noises.
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i 4

Define a new state variable

T _, T _cT _cT
s, = (xn, Wty v ) (2.3.88)
and a new state transition matrix
-l/Tw
$(n,n-1) (e )Fn 0
—l/Tw
¥Y(n,n-1) = 0 (e I 0 (2.3.89)
-1/1
0 0 (e Vy1
and a new forcing function matrix
T r 0]
n n
Xn = I 0 0 (2.3.90)
0 0 I
and a new "driving noise" vector
T _ , %P T _*T
u, = (w_~, Wor Vg ) (2.3.91)

It can be seen that the new state s satisfies the relationship

S, = Y(n,n-1) s 1+ kn u, (2.3.92)
and the measurement z, is given by
z =G, s, t+ Vv, (2.3.93)



where G, is defined by

Gn = (Hn, 0, I) (2.3.94)
Now the problem is reduced to exactly the same form as

the cases when the noises are uncorrelated except that now

the state vector is of increased dimension and includes all

possible correlated noises. The estimator for the augmented

state s, can be formulated in exactly the same way as before

with initial conditions

~ ~

s = (x

O'O 7 Or 0)

o|o

The covariance of the initial augmented state estimation

error is given by

— o 6
olo
o T
Eolo —E(solo so[o) - 0 % 0
0 0 R
L =

Thus the augmented state can be estimated using the
same form of the equations as for the unaugmented state
without correlated noises.

If the true covariance of the correlated and uncorre-
lated parts of the noises as well as the proper correlation
times are known precisely and used in the filter, then it

can be shown that Enln as computed by the filter accurately
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represents the covariance of the augmented state estimation
error, and the filter is optimal in a minimum covariance or

maximum likelihood sense.
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Chapter 3

MAXIMUM LIKELIHOOD ESTIMATION
OF NOISE COVARIANCE PARAMETERS

AND THE SYSTEM STATE

3.1 Iptroduction

In Chapter 2 the theory of maximum likelihood estimation
was briefly discussed and then applied to the problem of
state estimation. The resulting equations were derived under
the assumption that the probability density functions of the
measurement and driving noises as well as the initial state
probability density function are known a priori. It was
shown that if the second order statistics of the noises are
not known precisely, the state estimation becomes suboptimal.
The purpose of this chapter is to utilize the concepts of
maximum likelihood to remove the restriction that R and Q be
known precisely a priori in order to obtain an optimal state
estimate.

In Section 3.2 important definitions are given and a
summary of some classical results of maximum likelihood esti-
mation discussed. These results concern the asymptotic

properties of maxkimum likelihood estimators, but they cannot

be directly applied to the problem of state and noise covariance

estimation.
In Section 3.3 the likelihood functions appropriate for

the solution of a set of closely related problems are derived,
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all of which concern the estimation of the noise covariance
parameters. Section 3.4 is devoted to demonstrating the
asymptotic properties of these estimators.

The remainder of this chapter concerns the application
of the theoretical results to the problem of state and noise

covariance estimation.

3.2 Summary of Previous Results in Maximum Likelihood

Estimation

Maximum likelihood estimation has been studied by many
authors and many useful results have been obtained concerning
the properties of maximum likelihood estimators. These
results apply directly only to a limited set of problems,
when the measurements are independent and identically
distributed. However, they provide a base upon which the
analysis of more general problems can rest. The purpose
of this section is to summarize the important results and
definitions which will be needed to extend the analysis to
more general problems.

First several important definitions must be made.
These definitions apply equally well to any situation when
the values of certain parameters are to be estimated on the
basis of observations of a random variable which is a function
of these parameters. They are not limited to situations
when the criterion of maximum likelihood is used to define
the estimate.

The estimator of the true value of the parameter o is an

observable random variable, say an(zl,c.,zn) which is a
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function of the sample elements (zl,..,zn) and whose distri-
bution is, in some sense, concentrated about the true value
of a. As in linear estimation, it will be found that the
covariance of the estimate is often a reasonable criterion

for measuring the concentration. If the realized (observed)

value of oy corresponding to a realized (observed) value of

(z;,<¢,2_) is used for o _, the true value of o, then the
1 n o

— ~
random variable on is called a point estimate or estimator

~

for 0. This use of on normally would be made, of course,

only when the value of oy is unknown.

If when o = a_, €(o_|a )= o , then a_ is called an
n'"o o n

of
unbiased estimator for e This is the last definition of
unbiasedness that was used in Chapter 2 in the discussion
of maximum likelihood state estimation.

If an estimator &n converges to a, as n > &, it is
called a consistent estimator for e A necessary condition
for &n to be a consistent estimator is that it be unbiased

and have a covariance which goes to zero as n + «,

If o is an unbiased estimator for oy having finite

covariance and has the further property that no other unbiased

~

estimator has a smaller covariance than oy it is called an
efficient estimator.

The following results of maximum likelihood estimation
have been obtained by Rao (Ref. 25), Wilks (Ref. 37), and
Deutsch (Ref. 6) after certain assumptions have been made
about the nature of the likelihood function.

Let ZE = (zi,..,zg) be a vector of n independent

identivally distributed observations and a be the m x 1
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vectors of parameters being estimated. Then the joint condi-
tional probability density function of Zn can be found by

application of Bayes' rule.
f(anu) = f(Zn_lla) f(znlzn_l,a) (3.2.1)

where f(zn|Zn_1,a) is the conditional probability density
function of z given z _, and a. Because of the assumed

independence of the z.,

1

f(anZ ,a) = f(zn|0L) (3.2.2)

n-1

By repeated application of Bayes' rule, it can be seen that

[a) (3.2.3)

n
f(ana) = izl £z

It is assumed that the likelihood function is chosen to be
the probability density function (3.2.3), in which case the

natural logarithm of the likelihood function has the form

Ln(Zn,a) = ln f(Zn|a) (3.2.4)
n
= E: 1n f(zila)
i=1
Then
n
9L _(2_,a) 3ln f(z.]|a)
n'"n - 2: i (3.2.5)
o0l 3o ter
i=1
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B

As stated in Chapter 2, maximum likelihood estimation is

concerned with finding the value of the parameters o such that

(3Ln(Zn,a))

L

o
n

For notational convenience, define
£f = f(Zn|u)
f = f(z]a)

The following assumptions are made about the likelihood

function.

5L 3%L 5°L
n n n
14 r
3a 8@2 oa

1) The derivatives exist for almost

all Zn in an interval Q of a.

2
of 9" £
1 n _ 1 n _
2) E[f;?&"“o]‘o’ E[qmmo]- 0

1 afn of
3) € [Ej- Y 55—|ao] is positive definite
n
4) For every o in @
L] 2in e
n —ITTIoR| < M)
daT a7 da

with e[M(Zn)[ao] < K for some K which is independent

of o and n.
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Define

S(z,a) = E%g—i the m x 1 single measurement score
d1ln fn
S (2 ,0) = —x—— the m x 1 total measurement score
n n o
J(a_,a) = elsT (z,0)S (2 a) ol
o’ ' ! fo)
T
= fs (z,oc)S(zgoc)f(z]cxo) dz
I (a_,0) = €[S'(z_,0) S_(Z_,a)la_]
n'%7% = n‘énr® n‘éne® 1%
= [fsT(z_,a) S (z_,a) £(z_|o_) dz
n n'’ n'"n’ n' "o n
J(ao) = J(ao,ao) the m x m single measurement
conditional information matrix
Jn(ao) = Jn(ao,ao) the m x m total measurement
conditional information matrix
The following theorems are from Wilks. The proofs will

not be repeated here but will be discussed subsequently.

Asymptotic Distribution of the Score

Suppose (zl,..,zn) is a sample from the probability
density function f(z|ao). Let f(z|o) possess finite first
derivatives with respect to a in the range Q. Then if
Jn(a,a) is positive definite for o in 2, the total measure-

ment  score Sn(Zn,ao) is asymptotically distributed for large n
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as a zero mean normal random variable with covariance Jn(ao).

Convergence of the Maximum Likelihood Estimator

Suppose (zl,..,zn) is a sample from the probability
density function f(z]ao) where f(z|a) possesses finite first
derivatives with respect to o in . Let Sj(z,a), the jth
component of the vector S(z,a), be a continuous function of «

in  for all values of z except possibly for a set of zero

probability. Then there exists a sequence of solutions of
J =
Sn(Zn,u) 0 (3.2.6)

which converges almost certainly to o If the solution is

a unique vector o for n > some ng, the sequence of vectors

converges almost certainly to 0, as n * .

Asymptotic Distribution of the Maximum Likelihood

Estimator

If (zl,..,zn) is a sample from the probability density
function f(Z|00) where f(z|a) possesses finite first and
second derivatives with respect to a in the range £, and if
the maximum likelihood estimator satisfying (3.2.6) is unigque
for some n > some ngs then it is asymptotically normally
distributed for large n with mean o and covariance [Jn(ono)]_l

Thus under the assumptions previously given, the maximum
likelihood estimator of the parameters o is asymptotically

unbiased and normally distributed for any value of oy in the

range 2, with
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A
g\0 = 0o
( nIOLO) (]

el(a_-ag) (o ~a ) Tla ] = [3_(a )17t

Now the distribution of the estimation error over the ensem-
ble of all possible true values of oy is sought. An analytic
expression for the unconditional probability density function

~

of oy cannot be found in most situations. Formally

f(un) = Jr f(an, ao) dao
Q

ff(u la ) £{(a ) do
n'"o o o
2

il

Even if f(&nlao) is a normal density function, the above
integral is usually nonanalytic for any nontrivial f(ao).
However, even if the unconditional distribution of &n is not
known, two useful moments of the distribution, the mean and

covariance, can be evaluated.

The unconditional mean of the estimate 1s defined by

E (o) Jf ela_la,) £lay) do

o

I
o
o
Hh
°
0
o
e
o
I
o

where E; is the mean of the distribution f(uo).

The unconditional covariance of the estimate is defined

by
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cov(a ) = E[(a_~E(a_)) (a_~E(a_))"]
= E[(o_~a_) (a_-a_)"]
But
Bl (0,-55) (0,300 "1 = Bl (@ =ay) (0,-a) ™) + E[(@o-0,) (@g-0,)"]

+ Bl =) (0 =30 "1 + El(a-32) (0@ ~a_)T]

~

Ele (o -a,) (a,-a) 7]

and E[(&n—ao)(uo-E;)T]

= 0
~ ~ ~ T _ —\ T
So cov(an) = E[(an—ao)(an—uo) ] + E[(ao—ao)(ao-ao) 1
~ ~ T ~ ~ T
But E[(an—ao)(an-uo) ]l = E[s((un-ao)(an-ao) )]
= EL(3_ (a)) 1]
2 7T
n

and El(a_~a_) (a —E-)T] cov(a_) the covariance of the
o "o o ~o o

o distribution

J

R
Then cov(un) = + cov(ao)
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J;l represents the mean square estimation error matrix, which

for any nontrivial f(ao) is nonanalytic, Formally

-1 _ -1
J, = Jr [Jn(ao)] f(ao) da
f
There are several approximate techniques for evaluating this

integral which are discussed in Section 3.7.

3.3 Derivation of the Likelihood Functign

In this section several closely related problems are
studied and the likelihood function appropriate for the
solution of each derived., It will be shown that the asymp-
totic behavior of the solutions of each problem is the same
so that if the asymptotic behavior of any one is found, the
results can be applied to the others. The notation and
definitions of Section 2.3 are used with the additional assump-
tion that the measurement and driving noise covariance matrices
are diagonal and time invariant. The technique of maximum
likelihood estimation is not restricted to cases when this
assumption is valid, but the estimation problem becomes much
more complicated if this assumption is not made. A discussion
of the problem when this restriction is not employed is given

in Chapter 7.

Estimation of Noise Covariance Parameters with No

A Priori Noise Covariance Information

The first problem considered is estimating the diagonal

elements of the measurement and driving noise covariance
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matrices without the use of a priori information about these
quantities. The maximum likelihood estimate of the noise

covariance parameters is defined by

l(Rn.Qn.Zn) = §a3 l(R.Q,zn) (3.3.1)

where 1(R,Q,Zn) is the likelihood function which is chosen

to be the conditional probability density function
1(R,Q,2,) = £(2_|R,Q) (3.3.2)
By application of Bayes' rule
£(z IR,Q) = £(z _;IR,Q) £(z, (2 _;,R,Q)

Repeating the above procedure to find f(Zn_l|R,Q), it can be

shown that

f(Zn|R,Q) = f(ziIZi_l,R,Q) (3.3.3)

i

where f(zilzi_l,R,Q) is the conditional probability density
function of z;, given Zi—l’ R, and Q.
Using the results of Section 2.3, it can be shown that
z; is a normally distributed random variable with conditional
mean
e(z 'Zi_l,R,Q) = H, x

i| i fili-1
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and conditional covariance

T T
e(dz, Azilzi_l,R,Q) = R + HiPili_lHi

~

where Az, z. — H, x
i i i

>

ifi-1

"~
¥ili-1

measurements using the true values of R and Q to compute the

is the maximum likelihood estimate of X after i-1

proper filter gains, and Pi|i—l is the conditional covariance

~

of x. about x. . .
i ili-1

E[(X.-A )(x,-;‘ )T{

Pili-1 = i7%5 110 (¥g7%y5-1) 1EioprReQI

It is assumed that a priori information about the state is

used in forming the above state estimates so that a unique

~

x exists for all 1.

ili-1
Define

B, = R + H.P. (. HT

i itii-171

Then the conditional probability density function of 25
is given by
T -1
. l/2(AziBi Azi)
1/2

1

) .
(2m) Y/ B, |

(3.3.4)

f(zijzi_l,R,Q) =

As in Chapter 2, it is convenient to work with the

natural logarithm of the likelihood function (3.3.2).

Ln(RIQIZn) = 1ln l(Rrlen)
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After algebraic manipulation,

n

_ _ T -1
Ln(R,Q,Zn) = constant l/2[ E: ln|Bi| + 8z;B; Azi] (3.3.5)

i=1

where "constant" includes all terms that are not functions of
R or Q.
It is convenient to introduce an auxiliary variable.

T

ef = @M

11
".’RYY’Q ""an)

£ is the (y + n) x 1 vector of the diagonal elements of
R and Q.

The likelihood equations are obtained by equating the
derivatives of Ln(R’Q’Zn) with respect to £ to zero. Using

the identities of Appendix A, after algebraic manipulation,

~

3L n 3B 9%~
—2=-1/2 ) i)t - B]lazaziE]h—% - 28T Loz, —:liz1yT
ng . i i 177171 3¢ i i 5] i
i=1
(3.3.6)

En is found as the solution of

aLn

Wé\ = 0 (3.3.7)

n

In general there is no closed form solution of (3.3.7) for

Sn s0 an iterative solution like those described in Section

3.6 must be employed.
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Estimation of Noise Covariance Parameters with A Priori

Noise Covariance Information

In this problem the measurement and driving noise
covariance matrices are not known precisely a priori but
rather knowledge of them is described by a joint probability
density function f(R,Q), where it is assumed that £(R,Q) is
known a priori. The maximum likelihood estimate of the noise

covariance parameters in this case is defined by

~

A ~ _ A
l (Rn’QnIZn) = max l (RrQan) (3.3.8)
R,Q

where lA(R,Q,Zn) is the augmented likelihood function which
is chosen to be the conditional probability density function

lA(R,Q,zn) = f(R,QIZn) (3.3.9)

By application of Bayes' rule

f(zan,Q) £ (R,Q)
f(R,len) = 717 (3.3.10)

f(Zn) need not be evaluated as it is not a function of R or

Q. Formally
£(2,) =ff £(z |R,Q) £(R,Q) dR dQ
94

All R and Q dependence is integrated out.
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. A A
Define Ln(R,Q,Zn) = 1ln 1 (R,Q,Zn) (3.3.11)

Then it can be seen that

Lﬁ (R,Q,2_) = L_(R,Q,% ) + ln £(R,Q) - ln £(z)  (3.3.12)

It is assumed that R and Q are independent random

variables, in which case

£f(R,Q) = £(r) £(Q)

It is further assumed that the diagonal elements of R and

Q are mutually independent, so

Y .
£(R) = 1T £(@®R'™M)
i=1
n ii
£(Q) = JT £(Q77)
i=1
n
A _ T -1
Then Ln(R,Q,Zn) = constant - 1/2 [ E: ln‘Bi|+AziBi Azi]
i=1
Y _ n
E: in £(® E: n £ (ot (3.3.14)

where "constant" includes all terms that are not functions

of R and Q.
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A n
L (R,Q,Z ) _ _ _ 3B,
n_ 'l g, [ZTr[(Bil-BilAziAzr'i“Bil) —X  (3.3.14)
3¢ : p¢d
i=1
5xT i
el PFiial H%] , 2ln £(g3)
i i agj i BEJ
BEJ agj

~

(3.3.14) is then set to zero and solved for En. Again there
is no general closed form solution so some iterative procedure
must be employed. However, it can be seen that the inclusion
of a priori information has a tendency to shift the solution

point towards the peak of the a priori distribution of £.

Estimation of Noise Covariance Parameters and the System

State with No A Priori Noise Covariance Information

In this problem the noise covariance parameters and the
state are to be estimated simultaneously. Noa priori infor-
mation about the noise covariance parameters is to be used,
but as before it is assumed that a priori state information
is used. The maximum likelihood estimate of these guantities

is defined by

~ ~ ~

I l(Rn’Qn’xn] ;2 ) = max l(R,Q,xn,Zn) (3.3.15)

where l(R,Q,xn,Zn) is the likelihood function which is chosen

to be the conditional probability density function

l(Rrerann) = f(xn,anR,Q) (3.3.16)
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[ 2o

where f(xn,anR,Q) is the joint conditional probability density
function of the state X, and the measurements Zn given R and

Q. By application of Bayes' rule
£(x .2 |R,Q) = f(xnIZn,R,Q) f(Zn|R,Q) (3.3.17)
Define Ln(R,Q,xn,Zn) = 1n l(R,Q,xn,Zn) (3.3.18)

The set of parameters to be estimated is now

Using (2.3.22) and (3.3.5) it can be seen that

_ T -1
Ln(R,Q,xn,Zn) = constant 1/2 [ln|Pn|n|+ AannlnAxn (3.3.19)

n
+ }E in|B,| + Az?BflAz.]
i iti T

i=1

>
>

where Ax
n

and "constant" includes all terms that are not functions of
Xn’ R, or Q.
The likelihood equations are obtained by equating the

derivatives of‘Ln with respect to o to zero. Dealing first

with finding the state estimate,

8L ~ _—
i (e = %1 0) "B (3.3.20)
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Then the solution of

BLn -~
3'}-;— Xn -+ ann = 0 (3.3.21)
g En
is clearly X Xn]n(zn’Rn’Qn) (3.3.22)

This says that the maximum likelihood estimate of the state
X, after n measurements is just the maximum likelihood state
estimate which uses the estimates of R and Q to compute the

filter gains.

The simultaneous estimates for £ (R and Q) are found as

the solutions of

3Ln ~
E—' X:n -+ Xn,n =0 (3.3.23)
g > &

Using the identities of Appendix A, after algebraic

manipulation,
SL 3P ox"
—n__1 Tr[(P_l -p~L Ax axTpT1 )——ELE - 2p7 1 ax —JELE]
3E 2 nln "nln""n "n n|n 3E 3 n|n~“n NS

‘B, ) —% -

n ~
oB. OX | &
+ z pri(8Tto a2, 02 BT b — 3 pTlaz —2liZ1pT] (3.3.24)
i i i1 Tg,] i 1 ged i

i=1
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Substituting the solution of (3.3.21) into (3.3.24),

3L, 9P 2 9B
—2 lx_»x - -1 Tr(P—l ——ELE) + }E'Tr[(BTl-BTlAz.Az?BTI)——#
agd | D n|n 2 n|n N R S A NS
£+E =1 |
n
o
OX | .
- 2 1Az, —2A%2 Hi]] A~ =0 (3.3.25)
3t E¥E

As before there is no general closed form solution of (3.3.25)
for En so some iterative procedure must be employed. However,
when there is no driving noise (Q = 0) a considerable simpli-
fication occurs.

By use of Bayes' rule, the likelihood function (3.3.16)

can be rewritten in the following form.

£(x,,2, IR, Q) = £(x,2 IR, Q f(z |2 _,,x ,RQ) (3.3.26)

By repeated application of Bayes' rule, it can be shown that

n
f(xn,anR,Q) = f(xn[R,Q) Ez; f(zi|Zi_l,xn,R,Q) (3.3.27)

When Q = 0, it is easy to show that

1 - T -1 5
1 _5[(xn—xn|o) Pn]o(xn_xn|o)]
£(x,[R,Q) = ~——577 /7 €
(2m) IPn O|
where xn]o = <I>(n,o)xolO
P, = &(n,0)P_; 8 (n,0)
n|o ' Folo ’
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1 T -1

and f(z,]|2 X_,R,Q) = 1 e_E(AZiInR Aziln)
2 Y - r 14 4 - = D
i'"7i-1""n (ZW)B/ZIRIl/z
where Az A z. - H, &(i,n)x
iln i i ’ n
Then (3.3.19) becomes
I (R,Q,%x_,0. ) = constant - L in|P | + (x —; )TP—l (x -; )
n'"r=ren’n 2 nlo n “nlo’ “nlo'"n “njo

n
2: in|R| + (zi—Hi©(i,n)xn)TR—l(zi—Hi®(i,n)xn)] (3.3.28)

i=1
Then
n
oL ~
n _ _ _ T -1 _ . T -1 .
Eraie (xn xn|o) Pn|o + E: (zi Hi®(1,n)xn) R Hié(l,n) (3.3.29)
i=1
. 2 _ T,. T -1 .
Define Fnln(Rn)-— z:¢>(1,n)HiRn Hi®(1,n)

i=1

Then after algebraic manipulation, the solution of (3.3.21)

for x is
n|n

~ -1 -1, .- T -
xnln = (Pn[o + Fn[n) (p nlo n|o E: ¢ (i, n)HlRn Zi) (3.3.30)

Using the identities of Appendix A, it can be shown that

n
oL -
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The solution of (3.3.25) for jo then becomes

n
SEIN o oe(ima e ps
R - = = E: [(zi Hi<I>(1,n)xn|I?(zi Hié(l,n)xnln) ] (3.3.32)
i=1
A closed form solution of (3.3.30) and (3.3.32) for

"~

xnln and Rn is not possible except in the trivial case of a

scalar measurement and when no a priori information about

the state is used. In this case, P_ 0 and (3.3.30)

njo ~
becomes
n n
o _ T,, T . -1 T, . T
ann = [Z ® (l,n)HiHiCP(l,n)] Z o} (1,n)Hizi (3.3.33)
i=1 i=1

From (3.3.33) it can be seen that xn]n is not a function of

ﬁn so that ;n|n can be computed independently of what value
of ﬁn is obtained from (3.3.32).

In any other case a numerical solution of (3.3.30) and
(3.3.32) must be performed. However, even if a closed form

solution is not obtained, the estimation equations in this

no driving noise case have a particularly simple form.

Estimation of the Noise Covariance Parameters and the

System State with A Priori Noise Covariance Information

In this problem the state and noise covariance parameters
are to be simultaneously estimated when a priori information
about R and Q is used. The maximum likelihood estimate of

these quantities in this case is defined by

§ A ”~ A ~ _ A
1 (Rn’Qn'xn]n’Zn) = max 1 (R’Q’Xn’zn) (3.3.34)



where lA(R,Q,xn,Zn) is the augmented likelihood function

which is chosen to be the conditional probability density

function

12 (r,0,x_,2) = £(R,0,%,2) (3.3.35)

By use of Bayes' rule

£(R,Q,x, |2) = £(x |R,Q,2) £(R,Q|Z)) (3.3.36)

From (3.3.10)

£(z,|R,Q) £(R,Q)
£(R,Q[2)) = 1z,

Assuming that all the diagonal elements of R and Q are

mutually independent, it can be shown that

A A
LD (R,0,x,7,) = 1n 17(R,Q,x ,2) = L (R,Q,X,2) (3.3.37)

Y n
+ }Z 1n £(R) + }Z 1n £(or%)
i1 iz1

So a
) aa da £
oL _(R,Q,x ,2.)
where is given by (3.3.20) and (3.3.24).

oo

Tt can be seen that the likelihood equation for the state is

unchanged by the inclusion of a priori information about £
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since f£({) is not a function of X, The likelihood equations
for the noise covariance parameters are modified by the
addition of the term related to the a priori probability
density function of the parameters £.

Several comments should be made about the four problems
just discussed. In each problem it was assumed that a priori
information about the state was used in forming the state
estimates. This assumption greatly simplifies the formula-
tion and solution of the problem while not being unreasonably
restrictive. If the initial state estimate is believed to be
of poor quality, then setting its covariance to a large
positive definite matrix will effectively result in not using
the a priori information about the state. The assumption
that the initial state uncertainty has a normal distribution
is a realistic assumption in most applications.

However, it was felt that a distinction should be made
between noise covariance estimators which do or do not use
a priori information about these parameters. The derivation
of the estimation eguations with no a priori noise covariance
information is important because an arbitrary selection of an
a priori distribution of these quantities does not have to be
made. The proper choice of a distribution for the covariance
parameters is much less clear than was the case in choosing a
distribution of the initial state estimation error. The case

of no a priori information could be handled within the frame-

work of the estimator that uses a priori information by setting

the covariance of the a priori noise covariance parameter
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distribution to a large guantity but with relatively little
additional effort the two cases can be treated separately.
The most physically motivated problem is the last of the
four given above, that of maximizing the joint conditional
probability density function of the state and noise covariance
parameters., The solution of this problem gives the most
probable values of the state and noise covariances based upon
the measurements and the a priori information. However, as
will be seen, the asymptotic behavior of the solution of this
problem is most easily obtained in terms of the asymptotic
behavior of the simpler problem of estimating the noise
covariance parameters alone. This is the primary motivation

for separately treating these two problems.

3.4 Asymptotic Properties of Noise Covariance and

System State Maximum Likelihood Estimators

In Section 3.2 the asymptotic properties of a restricted
set of maximum likelihood estimators were given, namely that
class of estimators for which the measurements were indepen-
dent and identically distributed. Now the asymptotic properties
of four maximum likelihood estimators  that do not fit in the

above category are sought.

1) noise covariance estimation with no a priori

information
2) noise covariance estimation with a priori information

3) noise covariance and system state estimation with

no a priori information
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4) noise covariance and system state estimation with

a priori information

As will be shown, if the asymptotic properties of the
first of the above estimators are found, the properties of
the other three follow immediately. Therefore, the asymptotic
properties of the noise covariance estimator with no a priori
information will be found first.

The maximum likelihood estimate of R and Q was defined

as the solution of (3.3.7). Define the single measurement

score
o
. 9B, 9Ky | .
sI(z.,6) = - 2 orp @ lopTlaz, a2TR ) L - 2 pTlag, —ElizlgTy
i 2 i i 1 7171 Jj i
og o0&
(3.4.1)

(3.4.1) differs from the single measurement score of Section 3.2
because it is a function of all measurements up to and includ-

ing the ith measurement. Define the total measurement score
n
sd(z_,g) = sI(z,,€) (3.4.2)
n “n’ i’ °
i=1

ana (3¢, ,8)17"

els3 (z,,£)8"(z,,8) €] (3.4.3)

j k
j;[s (2,,8)8°(2,,8) £(2;]g )az;

jk _ ] k
[7,(E5r8)] = e[sn(Zn,E)sn(Zn,a)lgo] (3.4.4)

j k
‘f][sn<zn,£)sn(zn,a) £(z lg)dz
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J(Eo) = J(EO,EO) the single measurement conditional
information matrix
Jn(go) = Jn(go,go) the total measurement conditional

information matrix

Then the likelihood equations (3.3.6) become

3L n
—2 = sl ,0 = EE si(z.,e) (3.4.5)
sgd . 1
i=1
It can be shown that when & = Eo’ the true value of the

parameters, the measurement residuals Az. are zero mean normal
variables with covariance Bi' with the further property that

the residuals at different times are independent. Or

|
o

ez, |£))

(@]

T _
8(AZiAZl|go) - Bi(go) Gil

It can also be shown that

90Xy | .
v o=l ifi-1 T _
e[Tr (B, Az, agj Hi)lgo] =0

Bx .
[Tr(B Az, ——ili-—H ) Tr(B] 1az ——iLl-—H DIE ] = Tr(B] lu, ik, HT)6

A ~

X OX,
- E[ 1[1 1 1[1 -1 Igo]

Gk,
3¢ sek

ii-1

where
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o7

A 9B, 9x
-1 -1, ., T.-1, °Bi -1 1/1-1 _T _
and € [Tr[(Bi B, Az Az B, );E?] Tr (B, Az, agk Hl)lgo] =0

Therefore, after algebraic manipulation it can be shown that

elsd(z,, £ ) |g 1 = 0 (3.4.6)

dB. 0B,

j k _1 -1°%1 -1°74
E[S (Zilgo)s (Zl,f:;o) I‘EO] = §' Tr(Bi agJBi ;E-E)(Sll (3.4.7)

+ tr(37lm,cdk, uT
i Tivifi-17i

) 849

From (3.4.7) it can be seen that S(Zi,go) is independent of

S(Zl,EO) for i # 1. Then it follows immediately that

elsd(z_,g )] ] = 0 (3.4.8)
: o 3B, 3B,
J k _ 1 -1°7i =174
els(z_,€)85(z_,E ) g1 = 5 }: [Tr(Bi 3 B] agk) (3.4.9)
i=1

+ 2 Tr (8T, Gik, H?)]
i Tivili-1vi

(3.4.7) and (3.4.9) represent respectively the single and
total measurement conditional information matrices.,

Because of the independence of the measurement residuals
when & = Eo and the other relationships shown above, the
asymptotic properties of the maximum likelihood noise covari-
ance estimator can be found relatively easily. These properties

are gquite similar to those mentioned in Section 3.2 even though
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I

the measurements are not now identically distributed.

Asymptotic Distribution of the Score

Suppose (zl,..,zn) is a sample from the probability
density function f(zi|Zi_l,£O). Let £(z,[2,_;,&) possess
finite first derivatives with respect to § in the range Q.
Then if Jn(é,i) is positive definite for & in Q, Sn(zn,go)
is asymptotically distributed for large n as a zero mean
normal random variable with covariance Jn(go).

Proof: It has already been shown that Sn(Zn,go) is a
Zero mean random variable with covariance Jn(EO). Now all
that remains to show is that Sn is asymptotically normally

distributed. From the definition of'Sn(Zn,EO),

n
S,(Z,80) = ) 82y,
i=1

It was shown that S(Zi,éo) was independent of S(Zl,go) for

i # 1, If it is assumed that no term dominates the above sum
by having a large value with appreciable probability, then

by use of the central limit theorem concerning the sum of
independent random variables, the score Sn(Zn,EO) can be

shown to be asymptotically normally distributed for large n.

Convergence of the Maximum Likelihood Estimator

Suppose (Zl"°’zn) is a sample from the probability
density function f(ziIZi_l,go). Let f(zi|Zi_l,€) possess
finite first derivatives with respect to £ in . Let sJ(zi,g)

be a continuous function of £ in Q for all values of Zi
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A

except possibly for a set of zero probability. If as n » «,

-1
[T (EHITT > 0

then there exists a sequence of solutions of

3 =

Sn(ZnIE) 0 (3.4,10)
which converges in probability to €o° If for n > some ng
the solution is a unigue vector gn, the sequence of vectors

converges in probability to go as n > »,

Proof: Define

ad(g_,8) = ersd(z &) |g)]

_ ([
_f:[s (Z.,8) f(zi|go) az,
— e —— n .
aleg,e = ) aleg.e
i=1

Then % sg(zn,g) is the mean of a sample of size n from a
population having mean AJ(EO,E) if Eo is the true value of £,
From the weak law of large numbers, % Sg converges in
probability to AjZEO,é)O Without loss of generality, define

Q' to be (£_-6, £_+8) with § > 0. It can be shown that Aj(go,g)

is monotonically decreasing over this interval, and since

] _
ad(g_,g) = o0,
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. -
ad(g,, g,-6) > 0

ad(g_, £ +8) <0

Therefore there exists an n(d§,e) so that the probability
exceeds 1 - € that both of the following inequalities hold
for any n > n(6,e) if £o is the true value of £.

J ; = £ -
S (Z,+8) > 0 if € = £ -6

S

slz_,e) <o if €

= | o

£o+6

Since SJ(Zi,E) is continuous in £ over  for all Zi except

for a set of probability zero, a similar statement holds for

1 sJ(z_,£). Therefore, for any fixed n > n(6,e) for some

n "n'n
in Q°',

iz siz_,&) =o0lg ] > 1- ¢

This is equivalent to the statement that a sequence of roots
of (3.4.10) exists which converges in probability to Eo. In

particular if (3.4.10) has a unigue solution gn for n =n

n, + l,.., for some integer n,, then the sequence En, n>n,

converges in probability to EO.

Asymptotic Distribution of the Maximum Likelihood Estimator

Iif (zl,..,zn) is a sample from the probability density

function f(zilzi_l,go) where f(zilzi_l,g) possesses finite
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first and second derivatives with respect to £ in the range Q,
and if the maximum likelihood estimator En satisfying (3.4.10)

is unique for n > some n, then it is asymptotically normally

distributed for large n with mean go and covaraince [Jn(Eo)]—l.
Proof: First it will be shown that
- T
Jn(Eo)(En-Eo) - Sn(zn’go) -0 (3.4.11)
with large probability. This will then be used to show that
& is an efficient estimator and the asymptotic distribution
of (gn-go) is normal with zero mean and covariance [Jn(go)]-l.
Since En satisfies the likelihood equation
J 2
Sn(Zn,gn) =0
then by a Taylor series expansion of Sg at EO,
. 2.5
. R . 35 3°s
J — - o] n k 1 n k,,1
Sn(Zn,En) = 0 = Sn(Zn,EO) +(——F AEO + 5 ——E—_T) A&OAEO (3.4.12)
dE £ 3ET3E £
o o
where Ago = En - go
Here as elsewhere index summation notation is used. If an

index appears more than once on the right side of an equation
with no comparable index on the left side, a summation over
that index is implied.

Define

2.3
. 38 3%s
cik(z_,e ) = (—E) + i( a ) ret
n n'’’o agk 2 agkagl : o
(@] O




Then (3.4.12) becomes
0=s(z_,£) +C (2,6 )AE
n' n’’o n n’’o o
Assuming that Cn is of full rank,

_ -1 T
pg = - [c (2 ,E )17 s (2 ,€) (3.4.13)

Define b =3 (£ )Ic_(z_,E)]1 "

Multiplying (3.4.13) by Jn(go) and rearranging terms,

T _ T
Jn(EO)Aﬁo - Sn(Zn,EO) = (bn + I) Sn(Zn,EO) (3.4.14)

It will now be shown that bn -+ -~ I with large probability, in
which case the right hand side of (3.4.14) > 0, establishing
the desired result.

As before, define
Ln(zn,g) = 1n f(znlg)

and £, = £(z,]8)

Now define

_ 1 n
D_(E_/E) = ¢ [f; = €, ]

2
2°E (2,0
= 1 n'"n
"jgf-fn(zn,a) 529 'n'Pnrto) 4
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9 f (Z ’ O)
Then D, (E r&g ) j%f - BE ag az

Assuming that differentiation with respect to EO can be

taken outside the integral

2
)
D, (EgrE,) = 3T _3E, Jﬁjpfn(zn'go) dz

2
3
= (1) = 0
320850

| 2% 521, If 5f
But — oo n, L1l|_=n n
£ 9E3E IEIE  £219E 13
n
3s_(z_,¢&)
_ n  n T
= ——F— * 5 (2 +8) S, (Z2,,8)
as_(Z_,&_ )
— — n n O
SO Dn(go’go) = 0= E[ ago |go] * Jn(go)
9s_(z2_,& )
n n'-o _
or € [——ago lao] = - J (&)
35 (Z_,E.) ii 35 (2, ,E,)
But ——r = —
ago i=1 agO

As n becomes large, by application of the strong law of large

numbers, it can be shown that

08_(z2_,& ) 9s_(2_,& )
n n (@] N n n O — -
9L _ E[" 5T |€o] = = J (&)
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Analogous to the assumption made in Section 3.2, it is

assumed that

331,
n

1
n

aedaeXael

with large probability as n » =, where K is independent of ¢

and n. Since AEZ -+ 0, the product

243
325
P ‘“ K 21) bEG > 0
sg*agt ]
o

with large probability. Assuming that for large n,
J () 2 n Ky
where K, is a positive definite matrix independent of n, then
C (2, E) > - T (E)

and b » -1 with large probability

Thus it has been shown that
2 T
J (&) (& -¢g)) - s (z ,8)) >~ 0 (3.4.15)

It has already been shown that Sn(Zn,EO) is asymptotically
distributed as a normal random variable with zero mean and
covariance Jn(EO). From this and (3.4.15) it can be concluded

that (gn—go) is normally distributed with zero mean and
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covariance [Jn(EO)]_l as n > ®,

Wilks has shown that (3.4.15) is a necessary and
sufficient condition for stating that gn is an asymptotically
efficient estimator for EO.

Thus it has been shown that the maximum likelihood
estimator for the noise covariance parameters using no a priori
information about these parameters is: 1) consistent,

2) asymptotically unbiased, 3) asymptotically normally distri-
buted, and 4) asymptotically efficient. Now the asymptotic
properties of the three closely related estimators previously
mentioned are sought.

If a priori information about £ is used, the maximum

likelihood estimator was defined to be the solution of (3.3.14).

A
ifﬂiflfﬂl) - (Efaiflfﬂl) +
5T - 5E -
1 &1

3ln £(E) _
_“33_—__)2 0 (3.4.16)
1

The estimator in the absence of a priori information is the

solution of (3.3.6).

~ =0 (3.4.17)

aLn<£,zn))
g2

oF

~

where El is the estimator using a priori information and 52

is the estimator without using a priori information. Expand-

ing (3.4.16) in a Taylor series about 52,

L2 (€,2 ) aL> (5,2 ) 32Lﬁ(g,zn)) o
( L )g ) & £ * 9EQE : (£,-€,) (3.4.18)
1 ) ,
+ seeen =o
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A
oL, (£,2)) _[31n £(&)
But ag A = ———5?_:-— ~
£2 £2
2_A 2
9E oL . 9E 0L g 93¢ g
2 2 2
It has been shown that for large n,
2 2
d Ln(EIZn) N 8[3 Ln(EOan) IE ]
3EAL . 9 3E o
o}
2
0°L_(& _,2 )
n -o’'"n _
But € 3E_BE, ]%)- Jn(EO)
2
0"L_(&,Z2)
n n .
SO SESE Jg = - Jn(go)
o
It has already been assumed that as n > o, [Jn(go)]—l > 0.

Now the assumption is made that £2 is sufficiently close to

EO so that the following approximation is valid.

2
2°L_(£,2,)

2
( 2 Ln(a,zn))

~ = - J (£)
0E9¢E 3EDE n'-o
E;2 go
2_A
3°L_(£,2 ) 2
n n . 3°1ln £ (&)
Then SEDE )g = Jn(go) + ——gz-g-g——)g (3.4.19)
2 2
It is also assumed that as n » «, - Jn(go) dominates in
(3.4.19) so that
2_A
L T
3gdg O n °o

¢2
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and then (3.4.18) becomes

~ = J () (E4-85) =0

2

31ln £(&)
°0g

The first linear correction to the solution 52 due to inclusion

of a priori information is then

T _ 7 -1 [31ln £(&)
&2
But as n »> o, [Jn(Eo)]—1 + 0, so assuming that all elements
of EL%EELEL)A are finite,
&2

~ ~

El -> 52 as n+>

Therefore, under a wide set of conditions, the estimator which
utilizes a priori information behaves asymptotically as the
estimator which does not utilize this a priori information.

If the state and noise covariance parameters are estimated
without a priori information about &, the maximum likelihood
estimator was defined to be the solution of (3.3.21) and

(3.3.23). Or

1n f(xg;anRrQ)) R (3.4.20)
n xn+§n|n
EvE,
(aln f(xgéZn|RrQ)’ o (3.4.21)
xn+},fn I n
£+E,
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The estimator for £ alone with no a priori information about §

was defined to be the solution of (3.3.6). Orx

31n f(zan,Q)

~ =0 (3.4.22)
ot £+E .,

where gl is the estimate of £ found simultaneously with

~

X and 52 is the estimate of £ found independently.

n|n
It can be seen that

d1n f(xn,anR,Q) 9ln f(anR,Q) d1n f(xnIZn,R,Q)

5T = 5T + 5T (3.4.23)
Expanding (3.4.21) in a Taylor series about 52,
9ln £(x_,Z |R,Q) 31n f(xn,Zn|R,Q)
SE ~ = 5E ~ (3.4.24)
*n"*n|n *n"*n|n
£~ E+E,
821n fix_,Z |R,Q) A A
+ n_ 1 ~ (E,=E ) +...
9E03¢E X >x 1 >°2
n ‘njn
£>¢,
91ln f(xn,ZnIR,Q) 91n f(xnIZn,R,Q)
But 5E A~ = SE ~
X_ X X_*X
n nln n .nln
&+e, £~E,
2 2
3“In f(x_,Z_|R,Q) 3°1n £(2_|R,Q)
*n"*n|n &>,
£>E,
5°1n £(x_|2Z_,R,Q)
+ L. } ~
989t X X
n .n|n
£>¢,

108



It has been shown that for large n,

5%1n f(znlg)) 2%1n £(z_|E_)
T BESE : E[“ 3 0F
(@]
= - T (5

where Jn(go) is the conditional information matrix,

to an assumption previously made, it is assumed that

sufficiently close to EO so that

Analogous

£2 is

(len f(Zn|R,Q))
~ 2z - J (E )
0E0E n'’o
E*Ez
2 2
9“1n f(xn,Zn|R,Q) 9“1n f(xnIZn,R,Q)
*n"*n|n *n"*n|n
£+¢, £E+E,
(3.4.25)
2 2
3°ln £(x_|2%2_,R,Q) -1 9P
But 4_ "n'"n’ ) A _ l—[Tr(P 1 nin
9EQE % on 2 n|n 3E%¢
n ‘n|n
£+¢,
-1 3P 3P 3% le
- Tr (P njn -1 “"n|n -1 n|in “n|n
n|n—F= Ppippr ) 2 TP, o 3T )Jg
2
Assuming that as n + «, - Jn(EO) dominates in (3.4.25),
2
3°1n f(x_,2_|R,Q)
3E0E =3 n'°o
X2 *n|n
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and then (3.4.24) becomes

31ln f(xnIZn,R,Q)) A A
n .n|n
3ln f(x_|2 ,R,Q), 3P
n'"n _ _ 1 -1 n|n,] ~
But 5E s T2 FT*Pnln 5E )]gz
n "n|n

£>E,

A

The first linear correction to the solution El due to

simultaneously estimating the state is then

~ ~

1 -1 -
g, = &y — F0_ (€ )17  [Tr (e

1

But as n » o, [Jn(EO)] > 0,

remains finite,
817 &

Therefore, the estimator of &

behaves asymptotically as the

simultaneously estimate the state.

1 8Pn|n)]A
In 738 g,

P
so assuming that [Tr(P;%n _Eglﬂ)]g

as n - «

when the state 1s also estimated
estimator which does not

As was shown, the estima-

tor of £ alone converges to the true value of 50 so that the

state estimator which then uses this estimated value of &

converges to the true maximum likelihood state estimator

discussed in Chapter 2.

Using similar arguments,

the inclusion of a priori

information about & in the simultaneous state and noise
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covariance parameter estimator does not affect its asymptotic &

properties,

3.5 §§lection of the A Priori goise Covariance Distribution

The choice of f(R) and f(Q) is somewhat arbitrary as
these functions are introduced so that uncertainty in know-
ledge of R and Q can be properly treated. However, once
selected, they can strongly influence the solutions of the
likelihood equations. They must be selected to realistically
represent possible variations in the values of R and Q while
not being mathematically intractable. Caution should be
observed in their selection because the simplest and seemingly
realistic distributions may be unsuited for use in a maximum
likelihood estimator.

Suppose that f£(R) or f(Q) is defined to be nonzero only
over some finite range of R or Q and is zero outside this
range. Then all solutions of the likelihood equations for
R and Q must also lie within this range. This can be seen by
considering the following example.

Let f(z|&) be the conditional probability density function
of a random variable z, assumed to be normally distributed
with zero mean and variance £. Let f£(£) be the a priori
probability density function of §, defined over some finite

range

£(8) = £(8) £, < & <&

(o]

= 0 otherwise
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By application of Bayes' rule

£(g|z) = f(zéil)f(g)
3
where f(z) =f f(z|g) £(g) 4g
gO

For any finite value of £, £(z|&) is zero only at z = o,

and it is assumed that f(§) is selected so that f£(z) is also
zero only at z = *», Then from the above it can be seen that
f(E[z) is zero outside the range (EO,El). This says that
regardless of the shape of f(£|z) within the range (Eo,El),

there can be no legitimate solutions of

f(aglz) _ o
d

outside this range. If the range is too small and happens
to exclude the true value of &, the maximum likelihood equa-
tions cannot have a valid scolution for the true value of §.
So if f(R) and f(Q) are defined only over some finite or
semi-infinite range of R or Q, this range must be large
enough to include all possible true values of R and Q.

Since the diagonal elements of R and Q represent
variances, it is clear that the a priori probability density
functions for these gquantities must be zero for all negative
values of the diagonal elements. From the preceding discussion
it can be seen that all solutions of the likelihood equations

for R%J and ng must be positive.
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Perhaps the simplest possible distribution for R and Q
is a rectangular distribution for any diagonal element,

denoted by £.

£(g)

Eg S & < &0 8 >0 (3.5.1)

=0 otherwise

It can be seen that this distribution does not possess finite

derivatives with respect to & for any value of £. The deriv-
atives are either zero or infinite. Therefore
3f(Elz) _ 1 af(ZJE) of ()
3E = f(zT'[ T £(8) + £(z]8) '52“]

_ £(&) 3f(z]&)
= {2y —of £ 7 &, 0r &y

This says that if £, < & < &gy then the maximum of £ (£]z)
occurs at the same point as the maximum of f(z|) and that no
valid maximum can exist outside the range (go,gl). The solu-
tion for % in this case would be identical to the solution
obtained by considering that no a priori information about
the value of £ exists, as long as such a solution is within
the range (Eo,El).

This is the distribution that would be used, at least
in theory, if the only a priori information about £ is that &

must be positive. In such a case
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_ 1
£ (&) lim El_g go < g < gl
£,70 ©
g l-—>oo
=0 otherwise

It should be noted that if a rectangular distribution of
£ is used, then in the absence of any measurements, no unique
maximum likelihood estimate of § exists. This is a conse-
guence of the fact that all values of & within the range
(go,gl) are equally likely to occur, so that there is no
preferred value from the viewpoint of maximum likelihood.

If another estimation criterion is used, there may be a
preferred value. In the case of a minimum variance estima-
tion criterion, the mean of the distribution of £ would be
the minimum variance estimate.

In many situations more may be known about § than merely
that its value lies in some range with equal probability of
occurence in that range. In such situations a more complex
f (£) should be assigned. Two possible distributions are

given below, a truncated normal distribution and a Gamma

distribution.

Truncated Normal Distribution

If £ has a truncated normal distribution, then its

probability density function is given by

2, 2
£(£) = K e"l/zkg'“) /9 ] E < E<E; (3.5.2)
= 0 otherwise
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_ 2
where K = 1/2
(2m) O[erf(sl) - erf(so)]

£ —u £,-u
s = o s = 1

o g ! 1 o

erf( ) is the error function
¢  is the mean of the untruncated distribution

02 is the variance of the untruncated distribution

£(8)

Eo u €1 & ~»
Fig. 3.1 Truncated Normal Distribution

The mean of the truncated distribution is

€ f £ F(E) AE = u + Au (3.5.3)

[e o]
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where Au = 07 K(e - e )

and the variance of the truncated distribution is

o =f (£ - B2 £(5) at (3.5.4)
= 02 + A02 - Auz
2 12
2 3 250 3%
where Ao = V2 Ko (so e - s; e )

Gamma Distribution

If £ has a Gamma distribution, then its probability

density function is given by

£(8) = oroay [%%]a'l e73/H £ 5 0 (3.5.5)

where a and u are parameters of the distribution, and a > 0.

I'(a) is the Gamma function.
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1
1.0

Fig. 3.2 Gamma Distribution with u = 1
The mean of the distribution is
g = j' £ £(g) d¢ = (3.5.6)
0

and the variance of the distribution is

2 ® = 2 u2
Gg = // (=€)~ £(g) dg = ru . (3.5.7)

0

In Chapter 2, the a priori state estimate was defined
as the mean of the normal a priori state probability density
function. Because of the symmetry of the normal density

function, the mean is located at the point of maximum
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probability or likelihood. Now the a priori values of R and
Q must be defined in terms of parameters of their respective
distributions. The Gamma distribution is not symmetric
about its mean so that the point of maximum probability occurs
at a different point than the mean of the distribution. The
same is true for the truncated normal distribution if the
points of truncation are not chosen to be equidistant from
the mean. Because the criterion of maximum likelihood is
used to define the optimal estimates of the state and noise
covariance parameters, it would be consistent to define the
a priori estimates of these quantities as the points of
maximum likelihood of their respective a priori probability

~

density functions. If Eg denotes the a priori estimate of

h

the kt component of &, then

£k = uk for the truncated normal distribution

k
k_ (a 1) uX  for the Gamma distribution

i
0
o

Actually, if the parameters of the respective distribu-
tions are defined, there is no need to separately define the
a priori estimates of & when solving the likelihood equations.
The solution is a function of the parameters of the distribu-
tion, not éo. Eowever, in subsequent sections when approxi-
mate solutions are discussed, it becomes convenient to intro-
duce the a priori estimates as separate entities, although
they will be related to the parameters of their distributions

as shown above.
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If a rectangular distribution of £ is selected, then no
point of maximum likelihood of this distribution exists. 1In
this case, the a priori estimate of £ is defined as the mean
of the rectangular distribution. In fact, any point within
the nonzero range of the distribution could be selected as
the a priori estimate without affecting the solution, but for

the sake of uniqueness, the above definition is made.

3.6 Computation of the Estimate

The likelihood equations for estimating the state and
noise covariance parameters with and without the use of
a priori information have been derived but in general the
equations are so complicated that solutions cannot be
obtained in closed form. In this section techniques for a
numerical solution of the equations are discussed. For
simplicity, only one of the several possible cases are treated,
that of simultaneously estimating the state and noise covar-
iance parameters when a priori information is used. The
solution of this problem includes all of the features that
are necessary for the solution of the others, so that only
slight modification of the discussion below is necessary in
the other cases.

The solutions of the augmented likelihood equations

A
3Ln(0L,Zn)

>
|

_ (iln f(aIZn)

oo

oa
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are sought. A general method of solution would be to assume
a trial solution and derive linear equations for small addi-
tive corrections. This process can be repeated until the

corrections become negligible. AIf oy is the trial value of
oL
the estimate, then expanding 535 in a Taylor series and

~ ~

retaining only the first power of Aao =0, o leads to

T T
o2 or? 2212
-56_ A = W— ~ + 2 R AO!,O = 0 (3.6'1)
o} o aa
n o o
o
o212
Assuming that 5 is of full rank, the first linear
o
o

~

correction to oy is

-1 T
(aZLi) BLi
AOL = - m_— A (3-6-2)
o 8&2 ~ a0 o
o o)
o

The next trial value is then a  + Aao.
2 A Clearly this method has several drawbacks. Computation of

7L
' and its inverse is very complicated, and once a stable

Saz

solution is found, another computation, the conditional infor-

mation matrix, must be performed before any evaluation of the
performance of the estimator can be undertaken. A mechaniza-
tion introduced by Rao eliminates these drawbacks. It is
guite similar to the above method but employs one approxima-
tion which greatly reduces the number of computations. For
this iterative solution, the approximation is made

521 B
n

aa2

- - A4
= - J.(a) (3.6.3)
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where Jﬁ(ao) is the augmented conditional information matrix

defined by

A, T a,’”
aLn(ao,Zn)) aLn(ao,Zn) & ]
o

oo a0

Thus the additive correction Aao becomes

T
s

n
x|~ (3.6.4)
a

1
o

— A " -
Ao = [Jn(ao)]
o

In large samples with a given o = o the difference between
321,A

2n ~ and - Ji(uo) will be of order 1/n, so that the above

BE Co
approximation holds to first order of small guantities.

~

When a stable solution of o is obtained, the asymptotic
estimation error is zero mean normally distributed with

1

conditional covariance [Ji(a)]— which is closely approximated

by the computed [Jﬁ(&n)]_l.

In this method the main difficulty is the computation
and inversion of the information matrix at each stage of the
iteration., 1In practice this is found to be unnecessary. The
information matrix can be kept fixed after some stage and only
the score recalculated. At the final stage when stable
values are reached, the information matrix can be recomputed
at the estimate value to obtain the covariance of the estima-
tion error.

Whenever an iterative solution to a set of nonlinear

equations is proposed, there is always a question of conver-

gence. This question is reasonably well resolved in the case
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of the likelihood equations. Deutsch discusses this problem
and references several other works on the subject. The results
of his discussion are given below.

If &o is selected as the initial estimate of the solution
of the likelihood equations, if &j is the jth iteration value
of the estimate, and if ; is the "true" maximum likelihood
estimate, then the iteration process converges if I&j-&|
decreases as j increases and tends to zero as j > «. The
iteration process is defined as follows: Let g(oa) be a
differentiable function which has no zero in the neighborhood
of the root & for the likelihood equation. The existence of

~

a is postulated. Define

h(a) = a - g(o) ;—d—lnL

where L is a likelihood function. The general iteration

process is then

>

dyp1 = [RGT g
J
=, - gla) & 1n L 7
Jj j‘ "oa o=a
J
If e. = |a. - a
J J

is the estimation error at the jth iteration, then g(a) must
be chosen such that €. < g, and €., > 0 as j = ». This

J+l J J
condition assures the convergence of the iteration process
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to the value o. By using the asymptotic properties of the
maximum likelihood estimator for large sample sizes, the two
previously given iterative techniques for the computation of

the estimate can be shown to be convergent.

3.7 Computation of the Information Matrix

By calculation of the information matrix, the asymptotic

covariance of the maximum likelihood estimate can be obtained.

1

Care must be taken to distinguish between [Jﬁ(ao)]— and

[Jﬁ(ao)]—l, the former being the conditional covariance of
the estimate for a given value of o the latter being the
average conditonal covariance of the estimate, averaged over

the ensemble of all possible true values of ae

T
A, & Lﬁ aLZ:1
Jn(ao - F haao da |ao] (3.7.1)
A, -1 _ ® A -1
Jn(ao) = j; [Jn(ao)] f(ao) dao (3.7.2)
where A = LA(a ' Z2.)
n n o’'"n

[Jﬁ(ono)]_l is a highly nonlinear function of aLr SO the

average conditional covariance cannot be explicitly calculated.

~

1 is not needed in finding o but is

&, -1
Fortunately, Jn(ao)
only used in evaluation of the estimator performance over the

1

ensemble of all possible a_. To find Ji(ao)_ some numerical

evaluation of (3.7.2) is necessary.

From (3.3.37) and (3.3.20),
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n_ _ _ T -1
15'}-(; = (Xn ann) Pnln (3.7.3)
From (3.3.37) and (3.3.24)
A o
oL oP X
- L Tr[(P 1 -P 1 Ax AxTP 1 ) nin_op 1 Ax __Elﬂ]
3 2 n|jn "n|[n""n [n 3 nln ““n To%
& X3
~7
9B 9X,
+ Z Tr[(B L g7 laz 22Tl L~ 5 pTlap —2liZ1 HT]
iTi 3¢ i i 5] i
i=1
j
¢ on £(E7) (3.7.4)
og 7
where Axn = xn - xnln
bzy = zy = HiXy151
Then it follows that
a2\ a1
e[l ] =22 Jo_|= 12, (£ )171 (3.7.5)
ox | 9x '"o n|n'~o c0e

Using the same procedures as in obtaining (3.4.9), after

algebraic manipulation, it can be shown that

A A
e [ 2Ly Oty o] = L{Tr(P-l Pnln -1 Fnln , , -1 ik )
3 kK '“o 2 nln".,3j "n|ln .k n|n’n|n
sgd ot 3E 5E
n
oB. 9B. .
+ Z rr (B t—1t pT1L 4 2 pTlm gk, Hr'?)]
1agd 71 gk i Civili-174
i=1
51n £(£3) 8ln £(£5)
+ A X (3.7.6)
agd ]2
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3% 5% T
where GiTi—l = [ 1|§—l 1|i—l IEO]
& 9
jk _ anln X |n
G € - lg
It can also be shown that
T
A A
oL L
e [ls2 T la ] =0 (3.7.7)
Xn ng ©

If the diagonal elements of R and Q (§) are mutually
independent and are distributed with a truncated normal

distribution, then

31n £(5%) _ _ (gF -5 (3.7.8)
( 7.
o€ o

where Ek represents the appropriate element of R or Q and
uk and Gi are the mean and variance of the corresponding
untruncated normal distribution.

If the diagonal elements of R and Q are distributed with

a Gamma distribution, then

k k 13
3ln £(§%) _a“ -1 _a
= 2 (3.7.9)

sek gk o

where ak and uk are parameters of the corresponding Gamma
distribution.
All of the necessary quantities appearing in (3.7.6)

can be computed using recursive relationships.
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nln (T - Aan)Pn|n—l

= é(n,n-1)P

Phln-1 n-1|n-1

st

oP oP
Z'nln _ [(T - Aan)__ElEZl (I - Aan)T]St

agdJ agdJ

st
oP oP . .
_nln-l _ (g(n,n-1) —Bziln=l oT o o qy3St 4 pSI B
3073 3037 n 'n
ik _ _ jk _ T
Gn!n = (I Aan) Gnln—l (T Aan) +
jk - - jk T
Gnln_l ®(n,n-1) Gn—l,n—l 0] (n,n-l)
oA oP
where ——5 = ——Eiﬂ HE - A 237 R
ag ag] n5g

The proper initial conditions for these recursive

relationships are:

oP oP .
olo _ olo _ cik 0

NG G olo ~
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(I -au)Y + A RrRAT
nn n n

¢T (n,n-1) + r_Q rg

+ aS) a
n n

3AT
n

t3

n agk

(3.7.10)

(3.7.11)

(3.7.12)

(3.7.13)

(3.7.14)

(3.7.15)

(3.7.16)

(3.7.17)

(3.7.18)



N

Jﬁ(ao) can be partitioned into submatrices, corresponding

to x_ and £.
n

_.l 0
(o) nla
J (o =
o
0 wl
n
T
1 a2\ ard ]
where W= e[ ggg gg; IEO
7pn|n 0
A -1
Then [Jn(ao)] =
0 W
B n
L E’n|n 0
and JA(a )_l =
n' o
0 W_
| n
where Pnln = J(Pnln (EO) f(Eo) dgo
and W; = J[Wn (Eo) f(Eo) dEO

Neither Pnln nor W; can be computed analytically. A
first order approximation to Pnln and W; could be computed

by expanding Pn]n and Wn about £.

. . opt] L 52pld
Paln(Es) = Paln® +| 7= S agl (—ggglﬂ) BE,  (3.7.19)
Z
i i 5 oW, 1 .7 22w AE (3.7.20)
ij L oid T n 1 n e 7o
Wn (Eo) B Wn () + & T AEo + 2 Ago ag2 - ©
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where AE =& - 3
But : E() = 3
and E(MEy AEL) = cov(E,)

where € is the mean of the a priori distribution of true
parameter values Eo and cov(go) is the covariance of this

distribution. Then

2.7
— . 3°P
i . | = 1 nin
PnTn o PnTn () + ETr[ ?j—_ cov(go)]

[

W Wil @ o+ Lo 32er13 )
Wn =W, 13 5 r A > cov Eo

& 't

It is obvious that extensive computation is necessary to
compute these quantities so that this technique is not particu-
larly attractive.

An alternate method of evaluating Pnin and W; would be

to select a sample of £ chosen from the distribution f(£) and

then employ the approximations

4

K
1
Pnln T K E: Pnln (gj)

W o~
n

RN
M=
=
o]
-
(-]

Of course, the sample size K must be sufficiently large to

ensure that this approximation is reasonably good.
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The simplest approximation to make would be

= P_; (%)

P
nin n|n

W, o= W (E)

This approximation may be adequate in applications where the

range of £ is limited, but caution should be employed in its

use.
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Chapter 4

SUBOPTIMAL SOLUTIONS OF THE ESTIMATION PROBLEM

4,1 Introduction

An exact or iterative solution of the likelihood equations
of Chapter 3 requires extensive computation as the solution
is generally found only after several passes over the measure-
ment data. In many applications such computation is not
feasible or a "real time" solution is needed. In such situa-
tions, approximate solutions are necessary, either to reduce
the required computation and/or to obtain a real time solution
of the parameter estimation problem. As would be expected,
the quality of the estimator is degraded in such cases, but
often the degradation is not serious. However, there are
certain special cases when some of the approximate solutions
are not unique or are so highly biased that their use is
guestionable,

This chapter deals with the derivation and evaluation
of several suboptimal approximate solutions. Also included
is a summary of possible parameter estimators suggested by
other authors. The list of approximate solutions is not
exhaustive but is meant to illustrate several techniques that

are availaple to obtain an adequate solution of the problem.

4.2 Linearized Maximum Likelihood Solution

The iterative solution of the maximum likelihood equations
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of Chapter 3 was based upon successive relinearization of the
maximum likelihood equations about trial values of the para-
meters obtained from the previous iteration, continuing the
process until convergence. If the initial trial value of the
parameter is "sufficiently close" to the true value, a single
correction to the initial estimate based upon a linear approxi-
mation to the equations is often adequate for the solution.
This single linearization is the basis of the linearized
maximum likelihood solution.
As in Chapter 3, the solution of

s>

n

o0, =0

o
is sought., 1If oy is the trial (a priori) value of the esti-
mate, then from (3.6.4) the linearized maximum likelihood

~

solution a, is found from the equation

2
A T
a, = o + [Jn(ao)] e & (4.2.1)
o
The linearized solution o, can be found as long as JA(a ) is
L 31.A n o

~ can be evaluated in

of full rank. Both JA(a ) and |+——
n o an
real time since they represent the conditional information
matrix and the score evaluated at the a priori estimate of
the parameter o. The conditional information matrix Jﬁ(ao)
is expressible as a linear combination of the conditional

information matrix at the previous time, Jﬁ_l(ao), and a

term which represents the additional information about the
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parameters contained in the measurement at time n. Similarly,

oLA
the score 35; ~ 1s expressible asAa linear combination of
Ao oLA
the score at the previous time, 82 l)A , and a term which

Co
is a function of the measurement at time n., Thus as the

measurements are taken, the conditonal information matrix
and the score can be computed as running sums, and the
linearized solution (4.2.1) can be found in real time.

LA
Because 82 is a highly nonlinear function of a, there

is no simple way to determine when the above linearizing
approximation is valid, or more importantly, when the linear-
ized solution is "closer”®™ to the true value than the a priori
estimate. Several measures can be used to determine if the
linearized solution is closer to the true solution. If the
linearized solution is valid, the following inequality should

be satisfied,

T m
y2 a1 512 o2
2 P17t =2 [ < =R P (2
da n Jda | da n 20, &
2 (e}

If this is not satisfied, another trial value of a, must be
found and the procedure repeated. Evaluation of this measure

requires a recomputation of the score and the conditional

information matrix at the value o = Ggr SO in this sense the
linearized solution is not real time. However, numerical

results indicate that this linearized solution converges over

a wide range of a, so that in many applications this check is

not necessary.

The asymptotic conditional covariance of the linearized

solution is approximately [Jﬁ(ao)]_lo A better approximation
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can be obtained if computational capacity allows evaluation
of [32(a,)17".

If it is known that there may be a significant error in
the a priori estimate of o, then use of the linearized tech-
nique may be questionable. However, in this situation a
combination of an iterative solution plus a linearized solution
could be used. Sufficient measurements are taken to obtain a
relatively good estimate of o by use of the iterative proce-
dures of Chapter 3. Subsequently, the linearized solution
is employed, using the results of the iterative procedure
as the point about which to linearize.

A third procedure, sequential relinearization, could also
be used. It is quite similar to the linearized solution
except at regular intervals of time, which may encompass
several measurement times, the best linearized estimate of a
is used to compute subsequent values of the information matrix
and the score. At each relinearization, the score must be
corrected to account for having used a different value of a
in its computation than the newly obtained value. Let &l be
the estimate of o that was obtained at the previous relineari-
zation and used from then until the present in the computation
of the score, and let & be the current linearized estimate,

2

Expanding the score in a Taylor series about oy

~

IR s> 521R . A

'-'——'n A ——_n A n A (Ol, -0 )+ . -

Jo. 3o 0000 2 71ttt
o, o oy

133




Using the approximation

522 5212 .
—2 = g 2 oy, = - 72 (ay)
3090 & FEEL 1 n' 1l

1

the corrected score is given by

snl s> SN

_,.__.I-l- = ,_...E, - JA(Q ) ((x -0 )

o0 & o0 & n 1 2 71
2 1

As with the linearized solution, this procedure should be used
only after a sufficiently accurate estimate of o is obtained,
either from the a priori estimate or through use of the

iterative procedure.

4.3 Near Maximum Likelihood Solution

By a suitable approximation to (3.3.38) a "near maximum
likelihood" solution can be found which reduces the necessary
computations considerably. 1In this solution, the state esti-
mate is defined to be the maximum likelihood estimate which
uses the near maximum likelihood estimates of R and Q (&)
to compute the filter gains, and estimates of § are found

from the solution of the "pseudo" likelihood equations:

Iy e -1 -1 T -1, 98 31n ££9)
—r=-3 Tr [(Bi mBi AziAziBi YT | + m———=—" =0 (4.3.1)
agd = 5¢7 agd

i=1

where An is the "pseudo" likelihood function defined by
(4.3.1). This equation is obtained from (3.3.38) by retaining
only the most significant terms. The savings in computation

OX, 1.
arise from not having to compute -%%£:i appearing in the
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likelihood function and Gk?l 1 appearing in the expression

90X
for the conditional information matrix (3.7.6). ——%%i—i is

an array with Bx(y+n) elements and Gk? is an array with

i-1
B x(y+n) elements., If all of the symmetry properties of
G?Ti—l are utilized, the number of independent elements is

B(S+l) x (Y+n)§Y+n+l). If the state, driving noise, and

measurement are of moderate dimension, the number of compu-
tations involved in calculating these quantities can be
considerable, so that not having to perform these calculations
can result in a significant saving in computer time.

If convergence of (4.3.1l) to a unique solution is obtained,

the asymptotic distribution of x and En are approximately

n|n

normal with conditional covariances

o T

e[(xn—x )(xn—xnln

n|n

TBA
EE

~ A oA
el(E-E ) (=€ )71 = [e[(-a-g—n

n

ls]] "1 A gl

The conditional information matrix Jn(g) is not the same as
the information matrix of Chapter 3 because of the omitted

terms in the likelihood function. Here

n .
. oB. k Jj
kj _ =171 dln £(&7) 9ln f£(&E7)
[(J_(&)]1] (B ———B =) |+ : (4.3.2)
n E: i Ek i agj ] agk g3

i=1

A comparison of (4.3.2) with (3.7.6) will show that the above

135



information matrix is smaller* than the information matrix of
Chapter 3. Thus, as would be expected, the covariance of
the parameter estimates will be larger when the pseudo likeli-
hood equations are used than when the full likelihood equations
are solved.

Numerical results indicate that the iterative solution
of the pseudo likelihood equations when the information
matrix (4.3.2) is used as an approximation to the negative
gradient of the likelihood equations may present difficulties.
This is because in some circumstances I given above may be
nearly singular and using its inverse in the solution may
result in an unstable iterative procedure. However, these
same numerical results show that the pseudo likelihood equa-
tions do have a unique solution, but they must be found using
other techniques in the iteration algorithm, say a fixed

step size sweep looking for zeros of the pseudo likelihood

equations,

4.4 Explicit Suboptimal Solutions

In this section, explicit "real time" solutions for the
estimates of R and Q are sought. As will be shown, such
estimates are approximations to the maximum likelihood solutions

and on any given trial may be highly biased. However, if the

* "a positive definite matrix A is said to be smaller than
another positive definite matrix B if the matrix (A=-B) is

negative semi-definite.
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a priori estimates of R and Q are sufficiently close to the
true values, such estimators will provide reasonable estimates
with considerably less computation than the estimators pre-
viously discussed. Even if the estimates are biased, they
provide useful information, If the estimates differ consis-
tently and significantly from the assumed a priori values,
then there is good reason to doubt the accuracy of the
a priori values, &ven though the biased estimates do not
necessarily reprezgnt better estimates of R and Q. In other
words, the explicit\gstimates will indicate if there is a
significant error in\Ehe a priori values of R and Q even if
they do not tell how to correct this error. 1In this sense
their use is related to testing a hypothesis on the values
of R and Q as discussed in Chapter 5.

These approximate estimators are obtained as approximate

solutions of the pseudo likelihood equations (4.3.1).

B

BA 3B, 3j
1 Tr (B Az AzTB l) %] + an fgg )
agj agj

=0

BEJ 2 i7i

i=1
The last term allows introduction of a distribution function
of R and QO so that a priori estimates can be weighted with
the estimates derived from the measurements alone. For this
approximate solution it is convenient to form estimates of R
and Q which are independent of this distribution function,
and after such estimates are obtained, then the a priori
estimates and their associated covariances are considered in
obtaining a combined estimate for R and Q. Thus, initially,

the solutions of the following equation are sought.
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n IB.
}Z -1 i, _
Tr(ABi -—j-) = 0 (40401)
i=1 g
-1 _ -1 _ -1 T -1
where ABi = Bi Bi Azi Azi Bi

Using the results of Appendix A, (4.4.1) becomes

n
. 3P, | .
[~ Y33 + mrala, —ilEZ1 5Ty - g (4.4,2)
i i1 1] 1
: 3R
i=1
n
3P. | .
Tr (ABTT H, —21i=l 5Ty - ¢ (4.4.3)
i i 373 i
i=1 90

As the equations stand, no explicit solution for estimates
of R and Q is possible, so further approximations must be made.
When these approximations are made, there is a real question
of existence of independent solutions of the resulting equations
for the unknown elements of R and Q. Even if there are suffi-
cient independent equations, there is no general way to obtain
a closed form solution of the nonlinear relationships. If R
or Q is to be estimated separately, there is no difficulty in
obtaining a reasonable solution to the problem. Unfortunately
the question of simultaneous estimation of these quantities
from the above equations is not well resolved. The solutions
given below represent separate estimation of R with Q known
and estimation of Q with R known. The two solutions can be
used, with caution, to simultaneously estimate R and Q,
realizing beforehand that the resulting estimates are not
independent. This dependency can result in biased estimates

which fail to distinguish between errors in R and Q. However,
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as mentioned previously, some useful information can be
derived from such biased estimates.

It can be shown that for many applications

aP. .
g, —|i-1 4T o1

i 4g3d 1

so that (4.4.2) becomes

n
_ - _.l . .
EZ 71 - BTY Az, azT B, )3T =0 (4.4.4)
1 R 1 1 1
i=1
But g7l = "t - Ry g.p, .HR?
1 1 1|1 1
Since ; . = ; . + P. HTR_l(z - H ; )
ili ili-1 i|ivi i i%ili-1

it can be seen that

g - Hyxg g = o2y C Hyxg pog o= HyPy g HGROT(zg = HiXg gy )
_ T -1 ~
= (I = HyPy | HR D) (zy = HiXy 5 )
= R(R™Y - rR7tu,p, HTR™L) Az,
1 111 1
= R BT Az
1 1
Defining Az! = z, - H.x., .
1 1 1 1|1
then BTY Az, = R™T Az!
R 1 1
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and (4.4.4) becomes

n
—l - T - g jj —_—
E: [R " (R HiPiliHi Azi Az )R ] =0

Sl

n
. xaT i _
or }: azy azi" + Hop ) H)IT = 0 (4.4.5)

It is still not possible to solve (4.4.5) for R as P and

i]i @
Azi are highly nonlinear functions of both R and Q. However,
if either the a priori values of R and Q or some estimates of

these gquantities are used to compute Az{ and Pi]i’ then the

estimate of R can be defined as
n
~S S * *
gJJ - 1 }Z (az!" Az T 4 m.py, . .uh) I3 (4.4.6)
n n i i iTi|ivdi

* *
where Azi and Pi]i are computed as functions of either the
a priori estimates of R and Q or some previously obtained

estimates,

A recursive relationship for jo can be obtained if

A~ ~

* *
Az! and P are not functions of R. or Q .
n n|n n n

* %

rJJ - n-1 233 1 ; ' *ogTy 33
R = R + I (Azn Azn + HnPn an) (4.4.7)

Equation (4.4.7) is not the only approximate solution that

could be reasonably obtained from (4.4.4). Rewriting (4.4.4)

n
}: (B - Az, AzTyBTY133 2 o
1 1 1
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A
n
-1
Or E [B.”(R + H.P,
i iti

i=1

HY - Az, azT)B71133 = o (4.4.8)

|i¥i i i’7i

If the estimation process has reached a steady state,
that 1is, B, = constant for all i, then an estimate of R can
be defined by

n
pdd = 1 2: *  FT * Ty 33
R) = (Az; Az, H.PjyjogH;) (4.4.9)
i=1

* *
where Azi and P.

ili-1 are equal to Az, and Pi|i—l computed as

a function of a priori values of R and Q or some past estimates
of these quantities. The form of (4.4.9) is not as desirable
as (4.4.6) because ﬁn is not necessarily positive definite.

If some of the squared residuals are small compared with

*
H.P. then some of the terms in the above sum can be

i 1|i—lHi’
negative. If this occurs often, then the resulting estimate
of R may have negative diagonal elements. However, the esti-
mator has the advantage of not being a function of the value
of R that is used to update Az: and P;|n—l at time n. This
can reduce possible bias problems in the feedback estimator
discussed later. The estimator of the form (4.4.6) is the
one studied further.

Obtaining an explicit estimate of Q is not as straight-
forward as obtaining the estimate of R. There are many
approximate solutions to (4.4.3) for 5n depending upon the
nature of the approximations made. The solution given below

is but one of several possible solutions, but it is felt that

it has the advantage of simplicity and wide applicability.
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By manipulation of (4.4.3) it can be shown that

n 3p,
E:Tr(AB 1y lll'lHT)
i 75533 i
=]
n : P
= E:'rr[P"l. (P P, .~Ax.AxT)PTT, -—ilili]
ili-1Viji-1"74] ili-1 3033
i=1
where Ax, é . X. . P HTB lA
i ili ili-1 ili-1 i
Define U, = 0(i,i-1)P, 6T (i,i-1)
i -1]i-1 !
Then (4.4.3) becomes
2 T T -1 %Pi1ia
(T.Qr. - Ax.Ax, = P.,. + U.)P.7. L =
1[1 1V ix i i7%i ild i’tili-1 WSE
i=1
But p = U, + T.Qr~
ifi-1 = Yp T T;00
oP oU.
So ili-1 774, p 3Q T
NSE S EERE SRV E B
39 T °U;
In many applications, T, ——= T, >> —, 50 (4.4.3) becomes
1 JJ 1 J3
3Q 3Q
n
T _ T _ -1 33 _
z: : 1|1 L (T3OTF —dx;8x] = By + U BENTE lrl] =0 (4.4.10)

Equation (4.4.10) cannot be solved explicitly for Q, so
additional approximations are necessary. If it is assumed

that Ti and Pi]"—l are approximately constant for all i, then

(4.4.10) becomes
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- - -1 ji _
[r P~ In 1 }: (T. QF b, Ax Piji* U5) Poln- lrn] =0
i=1

The equation above is satisfied if

n
T T _
E: (FiQFi AxiAxi Pili + Ui) =0 (4.4.11)

n
Or J % }Z (Ax Axl + Pi]i - U, )FT l]jj =0
If le does not exist, the generalized inverse of Fi is to be
used. (See Appendix A for discussion of generalized inverse.)
In general the dimension of the driving noise vector is less
than or equal to the dimension of the state, in which case

(FfFi)_l exists and the generalized inverse of Fi is

ﬁ
(TR

— T -
—(PiFi) T,
The estimate of Q is defined as
n
33 A1 Z * _ T- l]jj
Qn o (AX Ax + Pi[i U )F (4.4.12)

* * *
where Axi, Pi|i' and Ui are computed as functions of the

a priori estimates of R and Q or some past estimates. If

* *
Ax_, P , and U_ are not functions of R_ or Q , a recursive
n’ “n|n n n n

relationship can be obtained.

53 _ n-1 1po-1,, % * x k. Do1153
0Jd = Q + n[rn (Ax_Ax_ + B\ - ULt ] (4.4.13)
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Two classes of estimators of the form (4.4.7) and

(4.4.13) exist depending upon what use is made of past esti-

mates of R and Q.

1Y no feedback estimators

2) feedback estimators

In the no feedback case, a priori values of R and Q are
used to compute the quantities denoted by a * in the estimator
equations. In the feedback case these quantities are computed
as functions of past estimates of R and Q. At each stage the
best available estimates of R and Q are used to update the
starred quantities. If feedback is employed and the variance
estimation process converges to the true values of R and
0, then the state estimate ;nin will converge in most applica-
tions to the optimal state estimate that would be obtained
if the true values of R and Q were known a priori. However,
using this estimation scheme, convergence is not guaranteed.
In fact, numerical results indicate that if the a priori
values of R and Q are significantly in error, the process
will converge but to biased and incorrect estimates of the
variance parameters. Techniques for evaluating the perfor-
mance of the feedback and no feedback estimators are given
next.

The two measures which seem appropriate for evaluating
the performance of the explicit suboptimal estimators are
the mean and mean square error of the estimates of R and Q.

In the preceding section, estimators for the diagonal elements
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of R and Q were developed, resulting in (y+n) estimator
equations. The mean square error matrix of such estimates is
a (y+n) x (y+n) matrix, which includes the mean of all
quadratic functions of the errors in each component of the
diagonal elements of R and Q. Such a matrix is most diffi-
cult to compute, so for the purposes of this development, only
the diagonal elements of such a matrix will be considered.

As mentioned in Chapter 2, a distinction must be made
between conditional and unconditional expectation operators.
The same notation as in that chapter will be used to make
this distinction.

First, the performance of the no feedback estimator will

be discussed. From (4.4.7)

NS - a4 * * * 14

RIJ = B2l pIT o Lppr® 4T 4 g p” wT) 33

n n n-1 n n n nnnn
The conditional expected value of Rij is

n-1

~ddy
E(Rn ) = n

=33 i ' ¥ ' ¥T * T133]
e(RJJ)) + n[e(Azn Az! ) + Hne(Pnln)Hn]

This conditional expected value is conditioned upon the fact
that the a priori estimates ﬁo and éo are used to compute the
filter gains while the true values of these covariances are

R and Q. Averaging is performed over the ensemble of all

driving and measurement noises as well as all possible initial

state conditions.
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* ~% %
z_ = H x =v,_ - HZX
n n“n|n n n“n|n

Az?!
n

* % _ T R vxT T
' ' =
So a(Azn Azn ) t-:(vnvn) + Hn e(xn[n xnln)Hn
¥ n¥®
- H e(x VT) —e(vxT)HT
n nin'n n“n|n’“n
* *
= R + HP HT - HA R - RA THT
n nin n n"'n n n
k% T,: * T, -1
where Bp = Pn|n—lHn(Ro * HnPn|n—lHn)
* * * ~
P = e(& % T ) (not P unless R_ = R
n|n n|n“n|n n|n o

and Qo = Q)

*
In the no feedback case, Pn|n is not a random variable under

*

the expectation operator, so e(Pn|n) = Pn{n and
233y - nzl _(g33 1g33 33
e(R_7) — e(R 7;) + =(R77 + AF ) (4.4.14)
* * *
where AP = H (P, + P | )H. - HA'R - R A "H
n n'‘nln n|n’“n n n n n
This can be expressed as
n n
n
Al
where Fn == Z AFi
i=1
~ _ a ~ _ £h * * _ * T
If RO = R and Q = Q, en Pn[n Pnln’ AnR = Pn an, and



from the definition of AFn it can be seen that AFi = 0,

for all i. Then
n

If Ro # R or QO # Q, then AFi # 0 and Rn is biased, the bias
equalling Fn'
The unconditional expected value of Rn follows from the

above,
=33y - 33 i3
E(Rn ) = E(R ) + E(Fn )

Here averaging is done over the ensembles mentioned above
and also over the ensemble of all possible R and Q.
By definition E(R) = R, where R is the mean of the

distribution of all possible R values, and

n
E: E (AF )
i=1

But E(AF,) = H.E(P.,.)HY + H.P.|.HY - H,A'E(R) - E(R)A THT
i iTYili i itiliti it i Vi

Sl

E(Fn) =

E(Pili) can be computed recursively using (2.3.43) and (2.3.44)

E (D - (1 * * T * kT
(Pyg) = (I=A;H;) E(Py ;5 o) (I-A;H;) " + A;RA4
EP, . = ¢(i,i-1) E(P ). ®T(i,i-1) + T,Qrr

ili-1) ’ i-1]i-1 ! i i

where Q is the mean of the distribution of all possible Q values.
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Define P.,. = E(Pil.)

= T % *= = *T T
Then E(AF.) = H,P,,.H, + H,P,,.H, - H.A.R - RA. H
1 1 1{1 1 1 1|31 1 1 1 1 i

n n

If the a priori values of R and Q are assumed to be equal to

the means of their respective distributions, then

and it can be shown that

*

P, |, = P,.

ildi ili

E(AFi) =0

Then E(RJ)) = RIJ

Thus ﬁn is an unbiased estimator of R across the ensemble of
all possible R and Q. However, if ﬁo # R or éo # O, then
E(AFi) # 0 and ﬁn is biased, the bias equalling E(Fn)o

The measures of error of the estimator are chosen to be
the expected squared deviation of the R estimate from the

true value, or e[(jo - RJJ)Z] and E[(Rl?lJ - RJJ)ZI°
el®3F - &39)?) = er®I - c®I)? + re®IIT - rIT))2
n n n n
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a[(RIjlJ - s(R%J))Z] can be computed recursively by noting that
=33 - o (r3Jyy127 = Rd3y27 _ =3J3y12
el(R)I - e(®RII))%) = et (R0 %1 - [e(®R))]

The diagonal elements of (4.4.7) are squared and the condi-

tional expected value then evaluated. Use is made of the fact
*

that the residuals Azi' are zero mean normal variables in

the no feedback case, and the approximation
RJ3J *3y2y o o (g3 *13y2
e[R2T, (a2 ' D)%) = e(rR)1)) el(az ') 7]

is used. It can be shown that as the filter approaches
optimality (RO + R, QO -~ Q), the above approximation is
identically satisfied. Using the above approximation and

after extensive algebraic manipulation,

=33 _ 2332, _ 33
el (R e(R31))?] = ¢ (4.4.15)
35 _ [n=1)%_33 2 53 33 x o542
where Gn =\ Gn—l + ;7 (R + AFn - (HnPnlan) )
So e (rR3J - rR3I%)2) = 3T 4 (pIF)2 (4.4.16)
n n n

In this expression, (F%J)z is due to the bias of the estima-
tor and ng is due to possible deviations from this bias.
The unconditional mean square estimation error follows from

the above.

RI3 _ RI3y2y = g(gdd 33,2
ELR)T - RIH) = B@lh + mLr) %)
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Evaluation of E(ng) and E[(ng)z] is extremely complicated
so the details of their evaluation are given in Appendix B.
Only the results of that evaluation are given here.

Under the assumptions that R, = R and 9, = 0, then

2 . . . . .
3dy = (nZl 33 2 mI3 2 L%y 2 T
E(Gn ) = n E(Gn—l) + n2 [(R an?n) * (Cnll ZR Cnll
(4.4.17)

T 37
+ I 2q Lapn)
where 2: is a diagonal yxy matrix whose diagonal elements

are E[(Rjj - ﬁjj)z]

Z is a diagonal nxn matrix whose diagonal elements

are E[(QI7 - 393)?]

is a yxy matrix defined by

n
j“=}: * 30,2 _ * 35
(Cnll) ((annlkAk) y< + (I 2HnAn) 6j2
k=1

is a BxR matrix defined by

i (I - ATH.) 6(i,i-1) A 4 1
- . . 1,1- =
i=k+1 L ’ ' k[k

An|k -

is a yxn matrix defined by

n
iv _ 3L, 2
(Ln}l) B E: ((ann|kaFk) )
k=1

*
Dk =1 - Aka
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n-1
n

2

33,2
Alsor E[(Fn )71

=T _ T 33
R°n |1 Cn|1 “&rCn|1)

2 0355 .2 1
) Bz + =52 n Gy

n

. T T35
(2 0L > Tal1 ZQ AL

Cal1 =

n|l

Lnll -
k=1

Evaluation of the no feedback Q estimator is similar to

that of the R estimator. From (4.4.13)

5 n-1 233 1 =1, %, *T * % me1 5
=m0l v 5T ax o+ R U )r )

J
n n n’"'n

* _ % ~&
hxy = nln T *n|n-1
*

T
n-1|n-1 " (n,n-1)

*
Un = d(n,n-1)P

The conditional expected value of Qg] is given by

e(Qld) = Eii e(@l)) + = (@7 + amld)

A * *-1 *_7 *
where AM, n Pn[nPnln—anIn—l -VPn|n—an|n—an[n




u, = ¢(n,n=-1)P°__

E(égj) = gl ) (4.4.18)

If ﬁg = = Q, it can be seen that AMk = 0 for all K.

P

In thisg case Qn i an unbiased estimator for Q. - If ﬁo £ R

or Qo # Q; then Qn is biased, the bias equalling Mn.

R

The unconditional expected value of én follows from

the above.,

E(égj) = B(oldy + E(ng) (4.4.19)

m(gl)) = 9

11
33y - L i3
E(Mn ) = Z E (MM )
k=1

R and Q, = g, the E(AM) = 0 for all k and
033y = w33
E(Qn )

If R # R or Qo £ 0, Q. is biased across the engemble of ail

possible R and Q, the bias equalling E(Mné.

As with the R estimator, the measures of estimator

SYror are E:[(Q?l3 = QJJ)E] and E[(dgj = ij)zl.

c1003d = 03021 = c1(03F = c@dIn?1 ¢ 1@ - 0I)1?
1 T n i




s[(aij - e(&ij))zl can be computed recursively'by noting that
el(@d3 - e31%1 = er@dNH?1 - [edN)i?

The diagonal elements of (4.4.13) are squared and the condi-
tional expected value then evaluated. Use is made of the
approximation

*T.T-1, 33,

~33 =1, A TRT=1,33, ~33 1
8[(Qn_l(Fn Ax _Ax T )--1 = e(Qn_l) el (T ~Ax Ax “T_

n n n

Using this approximation and after extensive algebraic

manipulation

et - e@¥y)?y = 573 (4.4.20)

.. 2 .. .
jl _ (n=1}\ .33 2 _ myJ3y2
where Jn = ( = Jn—l + n2[((Q + AMn Tn) )71

33 _ Ad3yv2¢ _ <33 33,2
s[(Qn Q°-)"1 = Jo- o+ (Mn ) , (4.4.21)

In this expression, M%j is due to the bias of the estimator
and Jgj is due to possible deviations from this bias. The
unconditional mean square Q estimation error follows from

the above.

el - 03921 = 5@l + mredh?




As before, evaluation of E(Jgj) and E[(Mij}zl is complicated

so only the results of such evaluations are given here.

Under the assumptions that R, = R and QO =0, then

-
334 = [nzl 33 2 = % 43,2
Bl ) = "':T) E(002) +5lQ =T ) )" + (Upy By njl

n

Lo wiinIn i)

+ nll

;:il

Un|

ali is a nxy matrix defined by

w3t = ) ety anh? - (dftanh? v wh

I o uql £J
9 = Hy T

fg is defined as the jth column of a matrix fg

(mg}ﬁ = ((fg)g)2 the square of the gth element

of the vector fg

W%fl is a:nxn matrix defined by

n
¥ J5 _ l
W ll) a E: ((gn n n[k
=1




Also from Appendix C,

. 2 .
33,2 n-1 33 2 1 ' 7= T
stop)®) = |2 ereg)p® v Sien ULy LROATL - Unp1 LgUAT) Y
+(2nw, > quqijl - Wy Z w' 31 (4.4,23)
n
where ! 41 Z u!
n|l " n k|1l
k=1
n
Y7 82 1 ]
n|l1 - n }Z Wel1
k=1

When feedback is used, the estimates of R and Q are used
to compute filter gains, so that these filter gains become
random variables under both the conditional and unconditional
expectation operators. Evaluation of the expected values of

nonlinear functions of the R and Q estimates becomes impracti-

cal unless approximations are made. The nature of these
approximations is e[f(x)] = f£(e(x)), where f£(x) is a nonlinear
function of a random variable x. As before

] * *
rJJ = nl Rjj + Laz 2z T 4 g p¥, gTy3d
n n n n ninn

* *
However, now Azﬁ and Pnln are computed using the past esti-

mates of R and Q. The conditional expected value of jo is then

~33y - n=1_ 237 1 ¢ X4 ¥T * T,3J]
e(Rn ) — e(Rn_l) + n(e(Azn pz! 7) + Hne(Pnln)Hn)
* ~ ~ ~ A
Pn n is a function of Rn—l""’Ro’Qn—l"°"Qo’ so that it now
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* *
becomes a random variable and e(Pnln) # PnIn as was true in

the case of the no feedback case.

* % T ko ok T vk T kT T
1 ' - + - , -
e(Azn Azn ) e(vnvn) Hne(xnlnxnln)Hn Hna(xnlnvn) e(vnxn n)Hn
T
where e(vnvn) = R as before
vk kT A
€(Xn]nxn|n) - e(Pnln)
Nk *
X v = ea’v vh)
n|n n nnn

*
In the feedback case, An is a random variable so it cannot

be taken outside the expectation operator.

* * N
A =P HTR 1
n n|n"n n-1
p* = (I-A'H_ )P, 2*5 )T + a'R *T
nln ~ n'n Pn|n-l(I n ' n nRn-1%n
P = o(n,n-1)P ot 1) + 1.0 . TT
n|n-1 -~ %0 n-1|n-1 (n,n=1) "'nfn-1Tn

~

* N
Vo is independent of A as past values of R and Q are used

*
to compute An. So
(A* T) _ * T *
e(A v v,) = e(An) e(vnvn) = e(An) R

T

Ty o R+ He(P | JH: - He(A) R - Re(A T)H
n- ""nln’"n n '''n n ’'“n

* *
So e(Az! Az!
n n
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D fiﬁe AF = H e(® | JHT + H e(P' | JHE - H e(A )R - Re(A T)HT
€ n n “n|ln’"n n ‘"n|n’“n n n n’''n
Then e(ﬁjj) = n-1 e(ﬁjj ) + i(R + AF )jj (4.4.24)
n n n-1 n n ¢
I s B,
n
where F = L z AR
n n k
k=1

Approximations must be used to evaluate E(Pn

*
and e(An).

*T

* * T *
= (I-A H )P (I-A H )~ + A_RA
nn’ n|n-1 nn n - n

T

S = I A* I *H T + *RA*
© ey g = el an)Pn|n—l( “AH ] (A RA, )

The following approximations are used.

* * T . * * T
e LE-ApR )P, (T-AZH)T) = e (T-AH) e (B, q) el(T-A )]
e(A;RA;T) N E(A;) RE(A;T)
* - * ~N -—l
e(a) = E(Pnln)HnJE(Rn_l)]

Using these approximations, e(Pnln) can be evaluated recursively.

Ty

- * * T * *
e(Pnln) = (I - e(A)H) E(Pnln—l) (I - e(@)DH)" + e(A JRe(A]

(4.4.25)
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= - T - T
¢ (n,n-1) (P ~1] 1) ¢ (n,n 1) + T_Qr
(4.4.26)

-Wlth € (Pnln_l)

*
Using the same approximations, e(Pnln) can be computed

recursively.

*

* T * ~ *
n|n—l) e(I-A H )" + E(An)s(Rn_l)e(An )

* *
e(PnIn) — e(I—Aan) e (P

(4.4.27)

*

_ * T _ - T
where E(Pnln_l) = <I>(n,n l)E(Pn_lln_l)Cb (n,n 1) + FnE (Qn_l)l"n

(4.4.28)

The unconditional expected value of"Rn follows from the

above.
n
~3dy = 33 Jiy - 533 1 E: 33
E(Rn ) E(R-’-) + E(Fn ) R + o E(AFk ) (4,4.29)
k=1
_ * T *
where E(AFk) = Hk(E(Pklk) + E(Pklk))Hk - HkE(e(Ak)R)
* T
- E(Re(Ak ))Hk

Additional approximations must be made to evaluate E(Pk'k),

* *
E(Pk|k)’ and E(e (A, )R), namely
2 A H )E(P *m )T * % g
E(Pklk) = E(I-A H)E( k|k_l)E(I-zslka) + E(A )R E(A,7)  (4.4.30)
— _ T _ —_ T
where E(Pklk_l) = o(k,k l)E(Pk_llk_l)® (k,k-1) + I Ol (4.4.31)

Similarly,
. = *H,_)E (P, ) *u )T *VE (R *
E(Pklk) = E(I-Ap k) (Pklk—l E(I—Aka) + E(A)E(R,_{)E(A, )

(4.4.32)
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* _ _ * _ ~ T
where E(Pyjy 1) = @0k, k-1)E(Py_;|y 1) 00k, k=1) + T E(Q_ )Ty
(4-4.33)
* * T - -1
and E(A,) = E(Pklk) H [E(Rk_l)]

In a similar fashion, the conditional and unconditional
expected value of the estimate of Q can be obtained.
e@ddy = 321 ¢ @I ) 4+ L (g 4 am )33 (4.4.34)
n n n-1 n n t
where after algebraic manipulation, AMn can be expressed in

the following form

L= = * T, T
AMn = Q Q + fn[(R R) + Hn(e(Pn|n_l) e(PnIn_l))Hn]fn
[ ]
(4.4,35)
_l *
where here f =T e (A )
n n n
Similarly,
£33y = 2L g3 ) + L (3 + m(am )3T
n n n-1 n n

where E(AMn) is evaluated approximately by using unconditional
expected values instead of conditional expected values in

(4.4.35).

* T T

N E(Pn]n—l))ann

E(AMn) = ann(E(Pnln_l)

- *
where here f =7 1 E(A_)
n n n
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The mean squared estimation error of the R and Q
estimators can be found approximately by using the results
of the no feedback estimators replacing Pn]n by e(Pnln) or
*

*
by €(P_, ) or E(Pnln), etc., the conditional

E(P nin

*
nln)' Pnln
or unconditional expected values being used depending upon
whether the conditional or unconditional mean squared error
is being evaluated.

Once estimates of R and Q have been found by the above
procedures, some way must be found for incorporating the
a priori estimates of R and Q into a combined estimate of
these guantities. Presumably, along with the a priori esti-
mates of R and Q there is available some measure of the quality
of these estimates, say the variances of the estimates.
Expressions have been developed for evaluating the quality
(mean square error) of the estimates based upon measurements
alone. Then a reasonable, but not necessarily optimal, tech-
nigque for combining these two estimates would be in some

inverse variance fashion. In the case of the R estimate,

-1 . -1

R + R
n o

3

R
o

b

R
n

~

Nk
where Rn is the combined estimate, Rn is the estimate based
upon the measurements alone, and Ro is the a priori estimate.
Z: is the unconditional mean square R estimation error
Ro ~ i3, 2 : :
matrix E[(Rn—R)v ) ]ij and E: is the wvariance of the
o
R
a priori estimate of R, and

(o]
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33)2]6.

i3 -
>« =El(R I - R i
R 3

n

Similar expressions can be developed for a combined Q estimate.

4.5 Review of Procedures Suggested by Others

Several authors have studied the problem of optimal
filtering when the parameters describing the statistics of
the measurement and driving noises are not accurately known.

A brief summary of the results of their work is included

in this chapter. As will be seen, the estimators are simple
to use but are suboptimal, that is, no optimality condition
is satisfied by the solution. In many applications the
resulting estimators may be biased or may not actually exist.
However, in some applications, such estimators may provide
useful solutions to the problem.

A technique of estimating R and Q developed by Shellenbarger
(Ref. 31) utilizes the theory of maximum likelihood estimation
outlined in Chapter 2, but applies the theory only to obtain
an approximate solution. His technique is based upon estima-
ting the parameters of R and Q using the information obtained
at one measurement time and then performing some average over
current and past estimates to obtain a combined estimate. If

there is insufficient information available at each measurement
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time to estimate all of the unknown elements of R and Q, then
his technique cannot be used. Unfortunately, many interesting
applications of optimal filtering have a small dimension
measurement compared to the dimension of the state so that
there may be little information at each measurement time upon
which to base estimates of R and Q. However, if it is assumed
that the driving noise statistics are precisely known a priori,
then there is always sufficient information in the measure-
ments to estimate the statistics of the measurement noise.
Given n measurements ZyreerZoy and the conditonal maxi-
mum likelihood estimate of the state prior to each measure-
ment (conditioned upon the assumed values of R and Q), the
joint probability density function of the n measurements can

be written as

f(zl,..,zn) = f(zn|zn_l,..,zl)f(zn_l|zn_2,..,zl)...f(zl) (4.5.1)

N
"
23]
»
+
<

where

Given that all the assumptions used in deriving the maximum

likelihood state estimator of Chapter 2 are valid, then

1 T -1
—7(Aszk Azk)

e

f(z

12, _2yevr2q) L
k' k-1 1 (ZH)Y/lek|l/2

A

where bz =z, = Hy xklk—l

_ T
B = Ry * HePx|k-18k
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Therefore

o 1

2
k=1 (2m)Y/ B, |

£(zyr0e02y) = 1/2
For estimation of Rn with Ql’°"'Qn known, Shellenbarger
suggests maximizing f(zl,..,zn) with respect to Rn and solving
for Rn. However, he realizes that the solution depends upon
the unknown Rl""Rn—l‘ To solve for all Ri’ f(zl,..,zn)
would have to be maximized with respect to Ri(l < i < n) and
the resulting equations solved for Rio Shellenbarger dismisses
this approach as being infeasible for any nontrivial system.
Rather than simultaneously estimating all Ri’ he suggests
that the single measurement conditional likelihood function
f(zn[zn_l,..,zl) be maximized with respect to Rn' using past

estimates of R,,..,R to compute the necessary quantities

1 n-1

appearing in this likelihood function.

aln f(Z |Z _ 7 es 2 ) - - _
— o n-l L _ g7l -7l oz a2t B (4.5.2)
Rn n n n n n

(4.5.2) is set to zero and the resulting equation solved for

~

R_. and P

n xn|n—l are not precisely known as they are

n|n-1

defined as the maximum likelihood estimate of the state and

its covariance conditioned upon the true values of Rl""’Rn-l
For this solution they must be evaluated using some average
of the estimates of the past Ri. The results of such a

procedure are

*
B (Bn - Az Azn )Bn =0 (4.5.3)




* A gL
where Bn = R + H P In-l n
* *
z 4 z - H_x
n n n “n|n-1

~

%k
are the values of x and P
n|n-1

*n|n-1 and P n|n-1 n|n-1

evaluated recursively using some average of past estimates

of R at each updating time. Then the estimate of R is

defined by

* * * T
Az _ Az - H P H (4.5.4)
n n “n n n|ln-1"n

% >
I

~

The conditional expected value of Rn is

3 _ vk _ i T, _ yT
E(Rn) = ellvy ann|n-l)(vn Ho%n n-1) "1 Hy E(P n|n- l)
= R+ H_ (e ¥ ) - e(p ))H
- € Xn]n-—l n|n-1 €% nln-1
W AT . .
e(x ) represents the conditional covariance of the

n|n-1*n|n-1
state estimation error, conditioned upon the true values of

R and Q and the fact that estimates of the past values of the
measurenment noise covariance matrices have been used in com-

puting filter gains. e(P l) represents the average (over

n|n-
the ensemble of all measurement and driving noises) computed
state error covariance matrix. As was shown in the previous
section, when past values of estimates of R or Q are used to

compute filter gains, evaluation of these two quantities is

exceedingly difficult and in general cannot be performed
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without approximations. Shellenbarger states without proof

that
n%k n,*m *
E(XnIn_an[n_l) E(Pnln_l) (4.5.5)
and thus concludes that
e(Rn) = Rn (4.5.6)

This demonstration of unbiasedness depends upon the validity
of (4.5.5), something that Shellenbarger does not adequately
discuss.

The case of estimating Qn with R Rn known is consid-

17
erably more complicated that the previous case. The solution
depends upon the rank of the measurement matrix Hn' The
forcing function matrix Pn is presumed to be the identity
matrix. The single measurement conditional likelihood func-
tion is maximized with respect to Qn’ using past estimates of
Ql""Qn-l to compute the necessary gquantities appearing in
this likelihood function.

?iﬁ_fiznlzn‘l""zl) = HB Y (B_ - Az _AzT)B THT (4.5.7)

n n n n n""n n

BQn

_ _ T _ T
where Bn = Rn + Hn(Q(n,n 1)p " (n,n-1) + Qn)Hn

n-1|n-1

(4.5.7) is set to zero and the resulting equation solved for

Q . As in the estimation of Rn' xn[n—l n-1|n-1

n
evaluated using some average of past estimates of Qi'

and P are
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(4.5.8)

T_%-1 T LINL B N
Han (HnQan Cn)Bn Hn = 0
* A * *T _ _ * T _ T
where Cn = Azn Azn Rn Hn d(n,n 1)Pn—1|n-l " (n,n l)Hn

If Hn is square and possesses an inverse, then

- A -1 * _T-1
Qn = Hn C Hn (4.5.9)
The conditional expected value of Qn is then
~ _ _ nx xR _ * T _
e(Q ) =0 + ¢(n,n l)[a(xn_lln_lxn_l|n_l) E(Pn_l|n_l)]® (n,n-1)
(4.5.10)
Again, Shellenbarger assumes that
¥ ki _ *
€ Xy 1[n-1%n-1|n-1' = € Pn-1|n-1’ (4.5.11)
and thus concludes that
(4.5.12)

e(Q) = Q.
The same comments apply here as before concerning the validity

of (4.5.11).

If B 1 does not exist, but (H Y™
n nn

lHn)_l exists, where

*
@T(n,n—l)Hg

Y, = R+ H Omun-LP g

N

then a solution for Qn can be obtained from (4.5.8) by
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K
finding B 1 using the matrix inversion lemma and carrying

out some matrix manipulation.

i

T,-1 -1 T -1 -1 -1 -1
n (HnYn Hn) nYn C Y Hn(HnYn H ) (4.5.13)
The conditional expected value of this estimate of Qn is equal
to (4.5.10).
\ -1 T,-1 -1 . .
If neither H nor (H'Y "H ) exists, then a unique
n n"n n
solution of (4.5.7) does not exist. However, by use of the

generalized inverse of Hn a particular solution can be defined

which satisfies (4.5.8).

ol c; gL # (4.5.14)

Q>

where Hi is the generalized inverse of Hn' If (HnHE‘l)_l exists,

then

H (4.5.15)

T -
Hn(HnH )
The conditional expected value of (4.5.14) using (4.5.15) is

~ _ T T, -1 T T, -1
E(Qn) = Hn(Han) HnQan(Han) H_ (4.5.16)

-1 %*T

T T
+ Hn(Han) H ®(n, n—l)[e(xn 1|n- -1¥n- 1|n-1 1)

- e(P* 1)1 @T(n,n—l)Hg(HnHi)_lH

n-1|n- n

As with the explicit suboptimal estimator, the real
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difficulty in the use of Shellenbarger's method is when the
elements of R and Q, are to be estimated simultaneously.
(4.5.3) and (4.5.8) must be solved for Rn and Qn' However,
there is no possibility that these equations can be solved
uniquely for these two quantities since the equations are not
independent. In essence, Shellenbarger suggests that the
number of unknown elements of Rn and Qn be reduced until the
number of unknowns is equal to the number of independent
equations, If Rn is assumed to be diagonal, the number of
unknown elements in Rn is reduced from y(y+1l)/2 to vy,
However, a solution for these diagonal elements and Qn is

possible only when there are redundant measurements, or

(Han)—l exists. In such a case,
~ A -1 * & *  km
c(Rn) = (1 Nnﬂ%Q c(AznAzn NnAznAzn Nn) (4.5.17)
where c( ) represents a column vector whose elements are the

diagonal elements of the matrix argument and

1.T

éH(HTH)"H
n nn n

N
n

r%f%lis a matrix whose elements are the squares of the

corresponding elements of N -

~

Once the diagonal elements o6f ﬁn are obtained, Qn can
be obtained from (4.5.13) using estimates of Rn in place of
the unknown Rn' Clearly this technique has applicability in
only those cases when redundant measurements are taken at

each measurement time. In most applications the dimension of
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the state is large compared with that of the measurement, in
which case the unknown elements of Rn and Qn cannot be simul-
taneously estimated by Shellenbarger's method.

Dennis (Ref. 5) uses an entirely different technique
for obtaining estimators for R and Q, but as in the case
of Shellenbarger's method, he essentially relies upon having
sufficient information in each measurement to define esti-
mates of R and Q based upon a single residual. If sufficient
information is not available, or if some components of the
driving noise are not observable from one residual alone,
then Dennis suggests lagging the driving noise variance esti-
mation with respect to the measurement noise variance
estimation, that is, use past as well as current residuals
to obtain some estimate of the driving noise covariance.

Dennis obtains a functional relationship between certain
residuals and the measurement and driving noises. From this
relationship he postulates the form of the estimators. No
criterion of optimality is used, and his proof of unbiased-
ness and stability of the resulting estimation loop is
guestionable.

At each measurement time, the existence of a minimum
variance or maximum likelihood state estimator is presumed,
with estimates of R and Q used to compute the proper residual
weighting matrices. From the recursive state estimate updat-

ing equation (2.3.38),

xnln = d)(n,n—l)xn_lln_l + A (z -H @(n,n-l)xn_lln_l)
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The assumed models for the state and measurement are

]
il

@(n,n—l)xn_l + ann

N
Il

H x + v
n n n

Then the following expression can be obtained for the esti-

mation error.

* n%
Xoln = *n|n = ¥n = I7AH)) ¢n-LIX, g5

* *
+ A v + (AH - I)T w
n n nn nn

Consider the three residuals

m A Nk
r =2z - HXx a vy x 1 vector
n n n n{n
~ /\*
rt 4 z - H x a vy x 1 vector
n n n"n|n-1
s A %k %
r- = x - X a B x 1 vector
n n|n n|n-1
It can be shcwn that
m * + H_ (I-AH )T *H -T)o 1) %"
'n T (I-H A IV, n nHn) Tpwy + Hp (A H, (n,n- )xn—lln—l
(4.5.18)
Py 4+ HT w - H@(n,n-1)% (4.5.19)
*n = Vn n n"n n ¥n-1|n-1 e
S * *H_T a'H o %"
Tn T BpVn t Apfnin"n nfn® (R/0- )xn—lln—l (4.5.20)
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These equations
can never be exactly
However, in terms of

mappings of averages

Begin by considering the two residuals rﬁ and ri

following form.

are singular in the sense that v and Wy

determined from the residuals alone.

squared residuals, some nonsingular

can be obtained.

in the
T 7 - -
vn Hn®(n,n-l)
%k 1
xn—lln—l (4.5.2 )
*
n| LWQJ _éan¢(n,n—;J
n,%
K ¢n - Cn Xn—lln-l (4.5.22)
- (;mT rST)
n'’ "n
T T
= (vn, wn)
[T HT
n
- * *
A A HT
| n nnn

b I H T
n n
s * *
r A A HT
qj n n
Or fh =
where —ﬁ
T
*n
K
n
C
n

Consider the ith

i_ ij 43 - oi3 *5
“n E: Kn” %2 " Cn *n-1|n-1
j .

FHn®(n,n—1)

*
|__Aan@(n,n—l)

element of En'
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Squaring r; leads to

eh2 = ) a2 )2 s ) ) kbIxikdek (4.5.23)
j i k#3
_ 1joik,Iy*k lk’\'*k x*3
2 zz Ez K0 Cn 9n*n- -1|n-1 E: E: C %*n-1|n-1%n-1|n-1
J

Assuming that v and W, are mutually independent zero mean
normal random vectors with time independent statistics, then
the only terms of interest in (4.5.23) are the first and last

because the average values of the others are zero. Therefore

ij }: E: 1j iky*k g i
Z (K ) C C n l|n—lxn-l|n—l + Ol.n (4.5.24)

where ai is the sum of all other terms in (4.5.23) and is by
definition zero mean.

Next Dennis assumes that (¢g)2 is a Rayleigh variable
having mean ﬁh or 55 as appropriate, where §h and ﬁh are

vectors of the diagonal elements of Rn and Qn' Thus
= K + S+ C (4.5.25)

where %n is a matrix composed of the squared elements of Kn’

Cn and En are zero mean random vectors,
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[ 1T* ok 1
Cn *n-1|n-1¥n-1|n-1%n

S = '
n .

Y+B Tu* y*T Y+B
Lfn ¥n-1/n-1¥n-1|n-1%n

—

h

where Cg is the jt column of CE.

(;:)2 and (ri)2 denote vectors whose elements are the squares
of ;2 and ri respectively.

(4.5.25) is central to Dennis's development of noise
variance estimation. In particular, it can be seen that if

kn is of full rank then

R +z, (ri‘)2
= k;l - k'lsn - k;lan
- S, 2 n
Q, + &, (r’)
Or
- I, m, 2
Rn el (rn) Nl Nl gn
= K - K "S - K a_ - (4.5.26)
_ n s. 2 n "n n n
g (rS) £l

From an examination of (4.5.26) Dennis postulates the
form of the estimator for Rn and Qn based upon one set of

residuals.
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ﬁh (rIrtll)2
- — *
¥t -xts
= s, 2
Q, (r’)

* . . * .
. where S 1s the matrix S with Pn—l|n—l substituted for
(% T )
¥n-1|n-1"n-1|n-1""
The above estimates are not those used for the computa-
tion of the filter gain matrices but rather some average of
past estimates. This allows for some "smoothing"” of the

single residual set estimates.

fak =
R é wR R.; Z wI.{ =TI
n J 3] + J
j=]_ . j=]_
n n
Zx A 0 = Z 0
= N .3 = = T
DR 3
j=1 j=1

where ws and w? are weighting factors that can be arbitrarily
chosen.

The conditional expected value of such an estimate is
most difficult to obtain since the matrix K, is a random
function of the previous estimates of R and Q. Dennis does
show that for scalar measurements and no driving noise the
estimate ﬁ; is to first order independent of variations in
the value of R used to compute the gain matrix Kn. He states
that this is true whether or not driving noise is present but
does not show that the estimate %; is independent of varia-
tions in the value of Q used to compute Kn. He also states

ok
that the estimate Qn is independent of variations in Q used
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to compute Kn for a scalar state variable. What all these
statements mean with respect to the biasedness of the estimates
in realistic situations is not clear.

If the matrix Kn is singular, then a slightly different
procedure must be used. It is assumed that R and Q are
constant or slowly varying in time. A time average of (4.5.25)

is taken prior to inversion.

“m, 2 -
n " R, + C.
(J) n 3 CJ
Z Q. = Z QLK. + 0.5, + Q.a.
. 3 s 2 ; sl I 373 33
j=m (r3) j=m Q. + &
j 3
n R
~ E: Q.K + .5,
_ o i I O 373
J=m Q

where Qj are arbitrary weighting factors with

n
ETEE:
: 3

J=m
n
If [ E: Q.K.]_l exists,
J 3
j=m
R n n (r?)2 .
= 2K, -1 E: 2, - 98]
= . . 2
Q j=m j= (r3)

Dennis attempts to show that for some n, the weighted
¥. matrix is nonsingular. However, using his own analysis,
if the measurement matrix is time invariant, the weighted kj

matrix is always singular if %j itself is, thus limiting the
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applicability of the solution to cases when this is not true.
Smith (Ref. 33) has studied the problem of real time

estimation of the state and the measurement noise covariance

but only obtains a suboptimal solution of the problem. In

his dynamical model of the state, there may be noise driving

the state but it is assumed that the statistics of this noise

are precisely known.

The state obeys the recursive relationship

X, = d(n,n-1) X1 + W (4.5.27)

The measurements of the system state have the usual form
z = H x_+ vV (4.5.28)

where z, is a vy x 1 vector. This single vector measurement
is equivalent to y scalar measurements when the measurements
are independent, or equivalently, when the measurement noise
covariance matrix is diagonal. In this case, the jth scalar
measurement at time n is given by
zd = )T x4+ vJ (4.5.29)

here hg is the jth column of the matrix Hg.

It is assumed that the initial value of the state is
normally distributed and that Wy is also normal. The distri-

bution of each vg is also normal with zero mean and variance
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jo. It is further assumed that Rij can be represented as

RJJ = kI 3D (4.5.30)
n
where kj is a time invariant but unknown precision factor
assaciated with each component of the measurement. Smith
assumes that each kj has an inverted Gamma distribution which
describes the a priori uncertainty in the value of kj. The
form (4.5.30) is used for Rn so that deterministic time-
varying characteristics of Rn can be easily modeled. The

probability density function of each kJ can be represented as

a 1l ab
aplz*1l -3
f(k) = C - e k >0 (4.5.31)
=0 k <0
where C = —3 1
+ 1
2(7 ) r(% + 1) b

and a and b are parameters of the distribution of k. The

mean of this distribution is proportional to b.

co

E (k) éjf k £(k) dk = =25 b (4.5.32)
0

The joint conditional probability density function of

the state X, and the parameter k is given by

f(xn,g|zn_l) £z |x, k.2, )

— (4.5.33)
f(anZ

£(x k|2 ) = )
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where 7 represents the vector of n measurements, Z.-1
represents the vector of n-1 measurements, and

o]

£(z |2, 1) = J[ f(znlzn_l,k) f(k) dk (4.5.34)
0

The conditional probability density function of the

m ment z iven k, x and Z is
easureme n give r X a-1

1 T -1
1 e—E(zn ann) Ry (zn_ann)

f(z_|x_,k,2__.) =
n'"n n-1 (2ﬂ)Y/2|Rn|l/2

(4.5.35)

Since the components of the vector measurement error Vo
are independent, Smith considers z, as a scalar since a vector
z, can be thought of as a sequence of scalar measurements as
mentioned before. Thus all subsequent expressions involving
the measurement z can be thought of as expressions involving
a component of a vector measurement. For notational conveni-
ence the superscript j denoting the component is dropped.

Then with R. = k R ’
n nom

n
1 T, 2
-1/2 -=(z._ -h"'x )"/ k R
£z |x .k, .) = —= e 2 n nmn nom,  (4.5.36)
ni n n-1 1/2
(271R )
nom
n
By Bayes' rule
£(x ,klz _;) = £(x [k,2 _;) £(klz ;) (4.5.37)
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In Chapter 2 it was shown that

Lix -x yTeTl (x -x )
£(x_|k,2_ 1) 1 e 2 n n|n-1’ “n|n-1'""n" "n|n-1
n ""n-1 (2TT)B/2|P ll/2
n|n-1 (4.5.38)

~

where ann—l is the maximum likelihood estimate of X before

the nth measurement, P is the conditional covariance of

n|n-1
X, about its conditional mean xn|n—l’ and B is the dimension
of the state X - Both the state estimate and its conditional
covariance are functions of the unknown k.

It will now be shown that f(xn,k|Zn) has a particular
form and that this form is preserved after repeated measure-
ments.

It is assumed that the distribution of the initial state

~

xo is a normal distribution with mean Xo|o and covariance Polo

1 —%(x -X Tp-1 (x_-x% )

olo*"o Tolo
|1—72-e (4.5.39)

f(x.) —

olo

Initially, Xg is independent of the parameter k so the joint

probability density function of X and k is
f(xo,k) = f(%o) f (k) (4.5.40)

The joint probability density function of the state and
the parameter k immediately before the first measurement is

given by

f{xl,k) = f(xl|k) £ (k) (4.5.41)
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It is easy to show that

~

1 _%(xl-;llo)szTo(xl_xl] )
£ (x,]k) — = e © (4.5.42)
1 2m) B2 e, |12
llo
where xl]o = ¢(1,0) xolo

T
$(1,0) Polo ¢ (1,0) + Qq

where Ql is the covariance of the driving noise Wy Then

using (4.5.31) and (4.5.42), (4.5.41) becomes

a lfa b ~ T -1 ~
-(z + 1) ——[——— + (x.-x )P (x,-x ﬂ
f(x,,k) =C  k ° e 2L K 1 71fo” "1lo™1 T1lot) (4 5 43
>+ 1
_ _C (ab)
where Cl = 172

(ZN)B/zlpllol

Because of the form of (4.5.43), f(xl,k) is termed a normal

inverted gamma probability density function. Then by (4.5.33)

1 1 1 T 2
zla+3) —Flggr— (217h;xp)

£(xy,k|2;) = C, k e nom, (4.5.44)

ab o T -1 o
L iSRS AP Pllo(xl"xljo)]

€1

where C, =
2 (ZﬂRn )1/2

oml f(zl)

is the normalizing coefficient.

After extensive manipulation, (4.5.44) can be written in

terms of new parameters xlll' Plll’ a', and b'.
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a’ lfa'b' ~ T -1 ~
—_ + (x.-Xx y°P (x.-%x )
£(xy,k|2;) =C, k % 177117 Fi]1ittiTT1n ]

2 (4.5.45)
Pl ”~ TA
where Xl|l Xllo + Al(zl - hlxl|o) (4.5.46)
P.,. =P, - A, (kR + nip. | h.)AT (4.5.47)
1|1 1l|o 1 nom, 1"1|o 1’71 i
_ T
A, = Pllohl/(hlPl|ohl + k Rnoml) (4.5.48)
T 2
k(z, - hix )
b' = E%T’[a b+ — 1 1710 ] (4.5.49)
(hlPl|ohl + K Rnoml)
a' =a+ 1 (4.5.50)

Thus, the joint conditional density function after the first
measurement also has a normal inverted gamma form.

Using the same procedures as above, it can be shown that
f(xn,k|Zn) has a normal inverted gamma form for any n. The
appropriate parameters of the density function can be com-
puted using recursive relationships of the form shown in
(4.5.46) - (4.5.50). Each component of the measurement has

associated with it its own a, b, Rn , and hn’ which are

omn

used in these recursive relationships when that particular
type of observation is being considered. The resulting a'

and b' are not updated again until another observation of the

same type is considered. On the other hand, Xn]n-l and Pnln-l’

being associated with the state X0 which is common to all
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observation types, are updated at each and every data proces-
sing stage.

Unfortunately, Egs. (4.5.46) - (4.5.50) cannot be
computed in a real problem because they involve k, which is

~

unknown. Thus in order to compute x , and b', an

n|n’ PnIn
estimate of k is required. Smith dismisses the question of
strict optimality and observes that for large a the parameter
b is almost equal to the mean of the k distribution. An

estimate of k is then defined to be equal to the parameter b,

and the following estimation equations are obtained,

¥nln = *a|n-1 * 2n %y - hpx nin-1' (4.5.51)
in = nl h K *T 4.5.52
Pn(n = Pn|n—l A ( PnIn 1% + Rnomn)An (4.5.52)
* * h ~
An Pnln-1 o/ (hoP nfn b, t K Rnomn) (4.5.53)
K ( nTx* 2
~ A Z -
k' =gy ko ail = nlp— (4.5.54)
(h P h + kR )
n|n-1 nom
n
al  =a+l (4.5.55)

It can be seen that (4.5.51) and (4.5.52) are just the
maximum likelihood filter equations, except that ﬂ is used in
place of the unknown k. The state estimate and its "computed"
covariance matrix are propagated between measurements using

the relationships
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~% ~

*nln-1 = ¢(n,n-1) Xn_1|n_1 (4.5.56)
* = o 1 * Q)T 1
Pnln—l = ¢(n,n=-1) Pn—l[n—l (n,n-1) + Q_ (4.5.57)

It should be noted that uniless ﬁ = k, the "computed" covariance
matrix P: n does not accurately represent the covariance of
the estimation error. Smith attempts to show that the estima-
tor for k as given by (4.5.54) is an unbiased estimator but
makes several unrecognized approximations in evaluating the

expected value of k'. He first says that the expected value

of the second term in (4.5.54) is given by

e(k) ef(z_ - h x _q1) 7]
o rnlntd (4.5.58)
htoe(® b+ oed) R

n

However, the expected value of a nonlinear function of the
* d"*
n|n-1’ Zpr 20 Xn]n—l

the function evaluated at the expected values of these

random variables k, P is not equal to

respective variables.

He then states that

*

n|n-1Pn (4.5.59)

+ hT e (P
nom n

e[(zn - hnxnln—l) ] =k R .

However, this is true only if on every trial P;|n—l is equal

to the actual covariance of the state estimation error. This

generally will be true only if ﬂ = k at every estimation stage.
The third approximation involved is in the computation

* . . .
of (P He obtains this quantity recursively using

n|n—l)'
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the following eguations.

Here as before, Smith fails to realize that the expected
value of a nonlinear function of a random variable is not
equal to the function evaluated at the expected value of the
random variable.

In testing the above theoretical results, Smith only
simulates the equations for the mean of the estimate of k
. and the mean computed co&arianée matrix. This is unfortunate
since many approximations were made in their derivation,
namely the rather dubious use of the expectation operators
above. So his results are somewhat open to question since
he did not simulate the actual performance of the estimator

of the state and the parameter k in a realistic situation.
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Chapter 5

TESTING OF STATISTICAL HYPOTHESES

5.1 Igtroduction

In Chapters 3 and 4 techniques for estimating the state
and noise variance parameters were discussed, and the neces-
sary equations for the solution of the problem derived. As
was seen, even in the simplest case, considerably more compu-
tation was needed for estimating the noise variance parameters
as compared with estimation of the state alone. In those
applications when estimation of the state is of primary
importance, estimation of the noise parameters should not be
undertaken unless there is reason to believe that the a priori
estimates of these parameters are sufficiently in error to
seriously affect the state estimation. The purpose of this
chapter is to develop expressions and criteria which allow a
decision to be made as to whether observed data are consistent
with the assumptions about the values of the noise variance
parameters. If it is concluded that the data are not consis-
tent, then éstimation of the parameters using the techniqgques
of the previous chapters should be undertaken.

Testing of statistical hypotheses is an important part
of statistical analysis but is perhaps one of the least
understood and applied techniques in optimal estimation theory.
Historically this$ is so becausé of a‘lack of a consistent

theory which'iS'generallY*applicable to a wide class of-
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problems. But even today, long after the tools of hypothesis
testing have been developed, often little use is made of

such tools. This can result in major difficulties in applying
optimal estimation theory to operational situations.

A statistical hypothesis is usually a statement about
one or more population distributions, and specifically about
one or more parameters of such population distributions. It
is always a statement about the population, not about a
finite sample taken from the population.

There are two types of hypotheses which are of interest,
namely simple and composite hypotheses. Hypotheses that
completely specify a population distribution are known as
simple hypotheses. An example of such a hypothesis is: the
population is normal with mean m and standard deviation Oyr
where mg and o, are specified values. When the population
is not determined completely by the hypothesis, the hypothesis
is known as composite. An example of such a hypothesis is:
the population is normal with mean M. Here the exact popu-
lation distribution is not specified, since no requirement
was put on o, the population standard deviation.

Hypotheses may also be classified by whether they specify
exact parameter values, or merely a range or interval of such
values. For example, the hypothesis m = m is an exact
hypothesis, although m > m is not exact.

Whatever procedure may be used for testing a hypothesis,
that is, deciding on the basis of observed data whether to

accept or reject the hypothesis, there are two possible errors
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involved: 1) rejecting the hypothesis when it is true, and
2) not rejecting the hypothesis when it is false. For any
given situation, there may exist a family of different tests
of the same hypothesis all of which give the same probability
of rejecting the hypothesis when it is true but result in
different probabilities of accepting the hypothesis when it
is in fact false. It seems reasonable that the "best" test
is the one which minimizes the probability of accepting a
false hypothesis for a given probability of rejecting the
true hypothesis.

All tests involve finding a test variable, or sample
characteristic, which is a function of the observed data.
One of the first problems to be faced in making a decision
from the data is that of choosing the relevant and appro-
priate sample characteristic for the particular purpose.
Different combinations of the sample data give different
kinds and amounts of information about the population.
Reaching a conclusion about some population characteristic
requires effective use of the right information in the
sample, and various sample characteristics differ in their
relevance to different questions about the population.

Once the sample characteristic has been selected, a
"critical region" of the test is defined such that if the
characteristic lies within the critical region the hypo-
thesis is accepted, and if it lies outside the critical
region, the hypothesis is rejected.

Let S be the sample space of outcomes of an experiment
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and x denote an arbitrary element of S. Let Ho be the hypo-
thesis being tested (called the null hypothesis), and let w
denote the critical region. The probability of the first

kind of error, rejecting Hd when it is true, is denoted by
P(x in (S-w){HO).= a. ' (5.1.1)

where o is called the level of significance of the test.
The probability of the second kind of error, accepting a

false hypothesis, is denoted by
P(x in w|H) = B (H) (5.1.2)

where H is a particular alternative hypothesis in the class

of all possible alternative hypotheses. The function
y(H) = 1 - B(H)

defined over all possible H is called the power function and
for a particular value of H, is called the power of the test
of H. The problem of statistical hypothesis testing is that
of determining a critical region such that for a given level
of significance, the power of the test is as large as possible.

The next sections of this chapter are devoted to discus-
sion of certain sample characteristics and distributions

upon which subsequent hypothesis tests are based.
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5.2 Sampling Characteristics and Distributions

Let x be a random variable with probability density
function f(x) and consider n independent repetitions of a
random experiment to which x is attached. .Perforﬁing the
series of n repetitions, n observed values of X are obtained,
denoted XyreorX . Any sample characteristic will be a func-
tion of the sample values, say g(xl,..,xn) and accordingly
the probability distribution of this latter variable will be
called the sampling distribution of the characteristic
g(xl,..,xn).

The sample mean is defined by

n
&l Z x. (5.2.1)
n 1

n
s2 4 % Z (x, - %) 2 (5.2.2)

x be

Then the expected value of the sample characteristic X
is equal to the population characteristic, m. Moreover, the

variance of x will be small for large values of n. Thus for
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a sufficiently large value of n, the sample mean X will be
approximately equal to its expected value m. If m is unknown,
X can be used as an estimate of m.

Consider the variance of the sample.

Z“ -2

i=1

!ISII—l

e(s ) = ——i 02

Thus the expected value of the sampling characteristic s is
not equal to the population characteristic 0% but is equal to
((n-l)/n)oz. This difference is insignificant for large n;
but for moderate n, it will be preferable to consider the

corrected sample variance

n
n _ l }: 2
n-1 T n-1

which has an expected value exactly equal to 02.

The variance of 52 is given by the expression

2 2 2
M,—U 2(u,=2u5) W,=3u
el (s%-e(s2))?] = 4n 2 _ 42 2- 4 4 - 2 (5.2.3)
n n

where Mo and M, are the second and fourth central moments of
the distribution function of x. (Ref. 3, P. 183)

For large n, the variance of 52 will be small and 52
can be expected to agree approximately with the population

variance since, as already pointed out, the expected value
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of 52 is practically equal to 02 when n is large.

Thus far, the sample mean and variance and their first
two moments were studied without reference to the density
function of the random variable involved. In order to obtain
more precise results about the properties of sampling distri-
butions, it will be necessary to introduce further assumptions
about f(x). The case of interest is when f(x) is a normal
density function.

If x is an observation from a normal distribution with
population mean m and variance 02, the probability density

function of x is

1 x—m)2
f(x) = —2— e 219 (5.2.4)
V210

It has been assumed that the n observations x, are indepen-

dent, so

n
E(Xyree,x ) = m £(x;)
i=1
It can be shown that if the n observations X, are inde-
pendent normal random variables with population mean m and

. 2
variance ¢~ , then

- . . . . 2
1) x is a normal variable with mean m and variance ¢“/n.

2
2) & ; is a central chi square distributed random
o

variable with n-1 degrees of freedom.

3) X and s? are independently distributed.
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4) t = v/n-1 X ; I is a Students' distributed random

variable with n-1 degrees of freedom.

5.3 Confidence Intervals

An understanding of confidence intervals is necessary
before testing of simple hypotheses can be undertaken, When
estimating the value of a parameter by observations on a
random variable, it is usually desirable to obtain not only
the estimated parameter value but also a measure of the
precision of such an estimate. To obtain such a measure of
an estimate g of an unknown parameter £, two positive numbers
8§ and o might be found such that the probability that the true

value of £ is included between the limits £ * 6§ is equal to

l ~-o. Or

P ~ 8§ <& < g+ 8)=1-u (5.3.1)
For a given probability 1 - a, high precision of the estimate
would be associated with small values of §. More generally,

to an unknown parameter £, two functions of the sample values

* *
£l and Ez are found such that the probability that the inter-

* *
val (El, £2) includes the true value & has a given value

1l - a, or
* *
P(gl < g < gz) =1 - qa (5.3.2)

Such an interval is called the confidence interval for the
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parameter and the probability 1 - o is denoted as the confi-

dence coefficient of the interval.

5.4 Tests on the Mean

Two situations will be treated here concerning confidence
intervals and tests on the mean, one in which o is presumed
known, the other when ¢ is not known. The case when o is
known is considered first.

Let the variable x be normally distributed with mean m
and variance 02, where m is unknown and o is known precisely.
Given n independent observed values xl,..,xn, a confidence
interval for the mean is sought.

In Section 5.2 it was stated that the variable

has a normal distribution with mean m and variance oz/n.
Therefore
A vn (X - m)

= 5 (5.4.1)

is a zero mean unit variance normally distributed variable.
Let o denote a given fraction and ta be the a percent
value of t found directly from a table of the normal distri-

bution. By the definition of ta’

P(_ta < t < ta) =1 - o (5.4.2)
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By a simple transformation, (5.4.2) can be written as

P(Xx - t <m< X+ t ) =1 - o (5.4.3)

<
* va

Q
3 a

(5.4.3) is a relation of the tvpe suggested by (5.3.2).

Accordingly, the interval

) (5.4.4)

is a 1 - o confidence interval for m, the limits of the inter-
val are confidence limits for m, and the corresponding
confidence coefficient is 1 - a.

Thus the confidence interval (5.4.4) provides a rule
for estimating the parameter m, which is associated with a
constant risk of error equal to o, where a can be chosen
arbitrarily.

Testing the hypothesis that m has some given value, say
m is related to the confidence interval deduced above. In
this case a decision is made concerning which of the following

hypotheses is true, based upon the observed data:

1) Ho: X is normal with mean m = mO and variance o
(known)
2) Hl: X is normal with mean m #¥ m and variance ©
o
(known)

Working ona given level a, the confidence limits of m are

computed accordilg to (5.4.4). If the given value m, falls
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outside the confidence interval, it is said that m differs
significantly from m_ on the o level and accordingly Ho is
rejected and Hl is accepted. If the confidence interval
includes the point m, it is said that no significant differ-
ence has been found and the hypothesis Ho is accepted.

In the case when HO is in fact true, this test gives
a probability 1 - a of accepting the hypothesis and conse-
guently the probability o of rejecting it. Thus the proba-
bility of committing an error by rejecting the hypothesis
when it is true is equal to the level of the test a.

In order to apply this test, the sample characteristic
X is found, and the quantity t computed, where

Yyn (x - mo)

t = 5 (5.4.5)

Denoting by o the desired level of the test, the value ta
is found from a normal distribution table. If |t| > t,s the
hypothesis Ho is rejected on the level a.

In the case when Ho is not true, but rather H, is true,

1
the probability of accepting the incorrect hypothesis based
upon the above test is not 1 - a. This is because (5.4.5)

does not have a zero mean unit variance normal distribution

when m # m, . However, the variable

_Yn (X - m)

o}

£ (5.4.6)

does have such a distribution. Define
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/n (m - mo) : . '
A = (5.4.7)

t' + A

(+
Il

Then

The probability that the test variable t lies within

the range |t| < t_ is

P(-t < t < t ) = P(-t_ - A<t' < t_ =A)
o o o o
Define B = P(_ta < t < ta) = probability of accepting HO
when Hl is true
£t -A
o
Then $] i[- f(u) du
-t =A
o

where f(u) 1is the normal probabilitv density function with

zero mean and unit variance. Since f(ﬁ))is symmetrical
about u = 0,
t +A t —-A
B = %—L/ £(u) du +j' £ (u) du]
—(tu+A) _(ta A)
Define tB = ta - 4, tB = ta + A
1 2
“8, ‘s,
By =[ f£(u) du, 8, —f £(u) du
-t -t
B 82
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Then B

—1-g=1-1
and Y=1-8=1-356 +8)

For —ta < A< ta’ both Bl and 82 will be positive, while if

A > ta' B, will be negative, and if A < _ta’ 82 will be

1

negative. It can be seen that

By = * P(|lt]| < |tB |) where the + sign is
1
used when tB is positive
1
B, = % P(|t] < |tB ) with the same sign
2

convention

Thus the power of the test, vy, is a function of m, My
o, 0, and n. However, if vy is plotted as a function of the
nondimensional parameter A, the only free variable is o, the

level of the test. Such a plot is shown in Figure 5.1 for

o = .05, .10, and .20.
Note that
t -t t -A
a o a
=-j' f(u) du + j' f(u) du +‘[ f (u) du
-t -t -A t
o o a
t
o
and l -« =-[ f(u) du
-t
a
.—t -
o a
o) B =1- o +_[ f(u) du +_[- f(u) du
-t =A t
o o
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It can be shown that for any A # O,

-t t =A
o o
J( £(u) du + j' £(u) du < 0
—ta—A ta
so B <1 -o0o for A # 0
=1 - « for A =0

In other words, the probability of accepting a false hypothe-
sis Hl is less than the probabilitv of accepting a true
hypothesis H_. As |A| increases, B decreases with the limits
R=1-0a for A =0 and B8 ~ 0 as |A| + =.

Since B will ordinarily be small for large a, it follows
that setting a larger will make for relatively more powerful
tests of Ho' The power curves shown in Figure 5.1 indicate
that if o is set at .10 rather than .05, the test with
a = .10 is more powerful than that for a = .05 over all
possible values of m under Hl' Making the probability of
error in rejecting a true hypothesis larger has the effect
of making the test more powerful. The proper value of a for
any particular application depends upon the relative penalty
paid for overlooking a true departure from Ho versus reject-
ing HO falsely.

For a given m, m and o0, increasing the sample size, n,
has the effect of increasing |A|, so that the power of the
test is increased with increasing n. A similar increase in

the test power could be achieved by reducing o; but in the
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application under study, o is not a variable which is easily
reduced, so that the only effective way to increase the test
power is to increase o or n.

Establishing confidence intervals in tests on the mean m
with ¢ unknown is similar to the previous work, except that
the sampling characteristic and its distribution are somewhat
different.

In Section 5.2, it was stated that the variable

vn-T (X - m)

t = 3 (5.4.8)

has a Students' distribution with n-1 degrees of freedom,
where X is the sample mean and s is the sample standard
deviation. Let o denote a given fraction and ta be the o
percent value of t for n-1 degrees of freedom found directly
from a table of the Students' distribution. By the defini-

tion of t _,
o

< t ) = l - O (504-9)

In the same fashion as before, the interval

(X - t, ——, X+t S ) (5.4.10)
vn-1 vn-1

is a 1 - a confidence interval for m, the limits of the
interval are confidence limits for m, and the corresponding

confidence coefficient is 1 - a.
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Testing the hvpothesis that m has some given value,
say m,, for o unknown is cuite similar to the test for o
known. A decision is made concerning which of the following

hypotheses is true based upon the observed data:

1) HO: x is normal with mean m = mo

2) Hl: x is normal with mean m # m

In order to apply this test, the sample characteristics
X and 52 are found and the quantity t computed, where
/n-1 (x - m_)

t = S (5.4.11)

Denoting by a the desired level of the test, the value ta
is found from a Students' distribution table. If [t]| > t_,

the hypothesis H is rejected on the level a.

Define
gr 4 /o1 éx = m) (5.4.12)
n-1 (m - m_)
and AL ; o (5.4.13)
Then t = t' + A

If HO is false (H, is true), t defined by (5.4.11) does

1

not have a Students' distribution, but t' does have such a

distribution. So
P(-t < t < t) =P(-t - A< t' <t = A)
o o o o
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Define B = P(_ta < t < ta) = probability of accepting HJ
when Hy is true

Then B = %(B + B

where Bl and 82 are as defined before except f (u) appearing
there is now the Students' distribution with n-1 degrees of
freedom.

As before, it is possible to construct a power curve
versus A for a given a. Now, however, the curve is also a
function of n, the number of sample values.

As in the case with ¢ known, B < 1 - a for any |A| > 0,
so that the probabilitv of accepting a false hypothesis is
less than the' probability of accepting a true hypothesis,
with B + 0 as |A| - «. Increasing o results in a more
powerful test of Ho but also increases the risk of rejecting
a true hypothesis.

Figure 5.2 shows the power of the above test versus

the nondimensional parameter A for a = .05 and .10, with
n = 10. Figure 5.3 shows the power versus A for n = 5, 10, 20,
with o = .10.

In this section, the normal distribution and the Students'
statistic have been used for drawing inferences on the unknown
mean of a population from which observations are obtained.

The distribution of the t-statistic defined by (5.4.11l) is

obtained after making the following assumptions:

l) the distribution of the random variable x is normal
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Fig. 5.1 Test Power vs A and «

1 1 1 L 1 | DU I L.oob ]
2

Fig. 5.2 Test Power vs A and a for Fixed n
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Figure 5.3 Test Power vs A and n for Fixed o
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2) the observations are mutually independent

3) the mean of the population is exactly m

From the theoretical and empirical studies it is known
that the t distribution is not sensitive to moderate depar-
tures from normality so that its application is not strictly
governed by the normality assumptions. A significant t may
not, therefore, be interpreted as indicating departure from
the normality of the observations.

Suppose that all the observations are mutually corre-

lated with a common positive correlation p for any two. Then
- 2 02
e[{(x -~ m )°] = — (1 + (n-1)p) (5.4.14)
o n
e(s?) = 2L 6% - o) (5.4.15)

Instead of the t-statistic (5.4.11) consider

— 2
(n=1) (x -~ m )
£2 = o (5.4.16)

2
S

which c¢an be shown to have a F distribution on 1 and n-1

degrees of freedom. From (5.4.14) and (5.4.15), the

expected values of the numerator and denominator of t2 are

21 6%(1 - (n-D)p) and 2L 0% (1 - o) (5.4.17)
The ratio of the expectations is unity when p = 0, but is

greater than unity when p > 0 and » « as p > 1. Thus a
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large value of t is expected to occur when p is positively
large, even when m_ is exactly equal to m. A significant t
may therefore be due to a departure in assumption 2).
Finally, when the assumptions 1) and 2) are true and
m # m_, the ratio of the expected values of the numerator

and denominator of t2 of (5.4.16) is

2
n{m - mo)

02

+ 1 (5.4.18)

compared with 1 when m = m_ s so that large values of t occur
when assumption 3) is wrong. This is exactly the reason why
the t-test is used to test the null hypothesis concerning the
mean of a distribution.

In computing (5.4.17) the extreme case of mutual depen-
dence with a common correlation p was considered. But in
general, any dependence giving positive correlation to pairs
of variables will increase the significance of t, so that the

test will indicate any significant departure from assumption 2).

5.5 Tests on the Variance

Let the variable x be normal with mean m and variance
02, where m and ¢ are both unknown. Given n independent
observed values Xl""xn’ a confidence interval for the

variance 02 is sought. 1In Section 5.2 it was stated that

the variable
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has a chi square distribution with n-1 degrees of freedom.
For any given level of test a, infinitely many intervals can
be found, each of which contains exactly the area 1 - o in
this distribtuion. Among all these intervals, the particular
interval (xi , X2 ) is chosen, where xi and xé are the oy

o
1 2 1 2
and o, values of the X2 distribution for n-1 degrees of free-

dom, where

Each of the tails X2 < Xj and X2 > Xi contain equal area

1 1 2
5%, and thus
2 ns2 2
P(x < < x. ) =1-aq (5.5.1)
oy O2 o,

By a simple transformation, (5.5.1) can be written as

n52 2 n52
P > < g7 < 5 )= 1l ~-a (5.5.2)
X X
) %1
Thus the interval
ns2 ns2
( s, ns_ ) (5.5.3)
X X
%2 %1
is a 1 - a confidence interval for 02, the limits of the

interval are the confidence limits for 02, and the corres-
ponding confidence coefficient is 1 ~ a. The confidence
interval (5.5.3) provides a rule for estimating the parameter

02, which is associated with a constant risk of error equal to
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Testing the hypothesis that 02 has some given value,
~say ci, is analogous to the tests of the mean given in the
previous section. In this case a decision is made concern-

ing which of the following hypotheses is true:

1) HO: X is normal with wvariance 02 = O

2) H

OO N

187 X is normal with variance 02 # C
In order to apply the test, the sample characteristic

52 must be found and the quantity X2 computed, where

x° = == (5.5.4)

Denoting by o the desired level of the test, the values

x2 and xi are found from a chi square distribution table

o1 2 2 2 .2
with n-1 degrees of freedom. If x < x” < x_. , the

o o
1 2
hypothesis HO is accepted on the level , otherwise HJ is

rejected and H. accepted. In the case when HO is in fact

1
true, this test gives a probability of 1 - o of accepting
the hypothesis and consequently a probability o of rejecting.
Thus the probability of rejecting H when it is true is equal
to the level of the test, o.

In the case when HO is not true (thus Hl is true), the
probability of accepting the incorrect H is not 1 - a.

This is because (5.5.4) does not have a chi square distribu-

tion when ¢ # Ogt However, the variable

X = > (5.5.6)
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does have a chi square distribution with n-1 degrees of

freedom. Define

2
o}
n & —= (5.5.7)
o
Then x'2 = nx2

and the probability that the test variable lies within the

2 2 2 .
range x_ < x° < Xy 1is
1 2
2 2 2 2 2 2
P (¥ < x7 < x. ) = P(nx < x'T < nxl )
%1 %2 1 %)
Define R = P(xi < xz < xi ) = probability of accepting Ho
1 2
when Hl is true
2
NXg,
Then B = 2 f(u) du
2
T]Xal

where f(u) is the chi square distribution with n-1 degrees
of freedom., It should be noted that unless n = 1, the area

under the tails of f(u) for u < nxj and u > nxi are not

1 2
equal. Define
2
Xy
_ 1 , 2 2
Bl —_[ f(u) du = P(x < nxy )
0 1
2
Xy
2 . 2 2
By = f(u) du = P (¥ < NXy )
0 2
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Then B =8, - By

and Yy =1- 2R

It is again possible to construct a power curve versus n for
a given o, the curve also being a function of n, the number
of sample values. Such curves are shown in Figures 5.4 and

5.5.

5.6 Multidimensional Hypothesis Tests with Time Varying

Population Parameters

In the preceding sections, hypothesis tests on the time
invariant parameters of the distribution of a scalar random
variable were discussed. The results can be generalized to
include tests on vector random variables with time varying
parameters. First the case of vector random variables with
constant population parameters will be discussed.

let X be a r x 1 random variable with density function
f(X) and consider n independent repetitions of a random
experiment to which X is attached. The resulting observed
values of X are denoted Xl""xn' The sample mean is

defined by

X =

Sl

n
Z Xi (5.6.1)
i=1

and the sample covariance is defined by

2 _ T _ o T
s = (Xi X)(Xi X) (5.6.2)

n
i=

1
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Fig. 5.4 Test Power vs n and a for Fixed n
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Fig. 5.5 Test Power vs n and n for Fixed a
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Let the population characteristics of the random variable

X be

e(Xi) =M for i =1,...,n
el(X, - M) (X, -~ M)"] =P
i i -
Then the sample mean is a random variable with

e (X)

|
=

e[ (X - M) (X

1
=
li
5]
L)

and the sample covariance is a random variable with

2, _ n-1
E(S ) = —E— P
As in the preceding sections, it will be necessary to
introduce further assumptions about f(X) in order to obtain
more precise results about the properties of the sampling
distributions. The case of interest is when f(X) is a

multidimensional normal distribution.

1 T -1
1 -5 (X-M) TP (XM ]

£(x) =
(2,”,)1‘/2|P|l/2

It is also assumed that the n observations Xi are. indepen-

dent, so
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n
£(X,,..,X ) = 7T £(X,)
1 U S T

It can be shown that if the n observations Xi are independent

normal variables with population mean M and covariance P, then

1) X is a r x 1 dimensional normal variable with mean

M and covariance P/n.

LTSZL
2) for any fixed vector L, n — is a central chi

L'P L
sguare distributed random variable with n-1 degrees

of freedomn.

3) X and s? are independently distributed.

T_
4) t 4 /n-1 L° (X - M) for any fixed L, is a Students'

VLTSZL

distributed random variable with n-1 degrees of

freedom.

Comparing these four results with those of Section 5.2,
tests of hypotheses and confidence intervals on a vector
random variable can be handled in the same fashion as a
scalar random variable. If the mean and variance of each
component of the random variable X are to be tested, the

proper choice of L for each test is

0
.th
L. =11 « j compon-nt not zero
0
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Instead of a single confidence interval and test of the mean

and variance, there will now be r such intervals and r tests

on the mean and
deviations from
manner entirely

The sample
characteristics
distribution of

characteristics

variance. The power of such tests under
the null hypothesis can be computed in a
analogous to that of the previous sections.
mean and covariance are not the only sample
which can be used to test hypotheses on the
X. Below are discussed alternative sample

which might be used and in many applications

they will provide sufficiently powerful tests.

Consider the random variable

where

such that

e

cCc=pP?P and C-l exists.

Such a C can always be found because P is positive definite.

Then

The elements of

s(Yi) = 0
e(Yin) = I the identity matrix

Yi are independent, zero mean unit variance

normally distributed variables, and

213



r
U. A1 }; v where YJ is the jth
r i i

element of the vector Yi

is a zero mean normal variable with variance %. Since Yi
is independent of Yk for i # k, Ui is independent of Uk for

i # k, and

g &

Sl

n
Y
1
i=1
1

is a zero mean normal variable with variance T

Define

T
iY (5.6.3)

Since the Yg are zero mean unit variance normal variables,
Wi is a central chi square variable with r degrees of freedom,

with Wi independent of Wk for i #¥ k. Then

n
A
gz & Z W, (5.6.4)
i=1

is a central chi square variable with n r degrees of freedom.

Now consider the variable

' = -_—
Yi = C(Xi X)

Yi + C(M - X)
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and define

W' = Y'" y!
LT - T -1,= _ T, =
= Y.¥, + (X-m) P " (X-M) 2 Y;C(X-M)
n
— 1 : -
¥ == Y. = C(X - M)
n 1
i=1
Then W! = Yiy, + YI¥ - 2 vi¥ (5.6.5)
1 1l 1 1
n n
Define zZ' = Z W! = Z (YTY - YTY) (5.6.6)
i iti <0
i=1 i=1

It can be shown that Z' is a central chi square variable with
(n-1)r degrees of freedom, and that %' is independent of U.

Since n r U is a zero mean unit variance normal variable

and Z' is a central chi square variable with (n-1l)r degrees

of freedom, and U is independent of Z', the variable
£ = Y0 n- U
V771

is a Students' distributed random variable with (n-1)r

degrees of freedom. Define

n
32 A 1 7' = 1 E: (Y?y_ - YT?) (5.6.7)
nr nr 1 1
i=1
Then t = ____”n'; )r T (5.6.8)

After some manipulation, it can be shown that
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n
2 = L Z x, - O, - %) (5.6.9)

i=1
By use of the sampling characteristics (5.6.8) and (5.6.9),
the null hypothesis that M = MO and P = PO can be tested.

The proper test variables for this test are

¢ = Dr T (5.6.10)

n
and nr s = Z (X.-X) p(’)l (xi—i) (5.6.11)

r
= 1 =J
where U = = E: Y

Under the null hypothesis, it has been shown that t has a
Students' distribution and nr 52 has a chi square distribu-
tion. It should be noted that unlike the tests of hypotheses
about the distribution parameters of scalar normal variables,
a mean test using (5.6.10) does depend upon the hypothesized
value of the covariance Po’ Unless M = MO and P = Po’ t does
not have a Students' distribution, and a significant t could
arise from a departure from the hypothesis M = Mo or P = Po
or both. However, it can be shown that t is not highly
sensitive to departures from the hypothesis P = PO, so that
a significant t can be used to reject the hypothesis M = My

alone, especially if the covariance test either accepts or

does not strongly reject the hypothesis P = Po’ While the
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mean test depends somewhat upon the covariance hypothesis,
it can be seen that the covariance test does not depend upon
the mean hypothesis. The covariance test variable (5.6.11)
has a chi square distribution if P = P regardless of
whether M = Mo‘

The mean and covariance test variables (5.6.10) and
(5.6.11) can be used to test the hypotheses outlined above
in a fashion similar to that of Sections 5.4 and 5.5, as
long as caution is employed in interpreting the results of
such tests,

Now consider the case of vector random variables with
time varying population parameters. The case of interest is
when the population mean is time invariant, but the population
covariance varies with time. Then the population character-

istics of the random variable X are

il
=2

e(Xi)

1
S

el (X, - M)(Xi

The sample mean is a random variable with

el -ME-mT1 =27

where

|
>
5|
15
o
'_l.
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and the sample covariance is a random variable with

e(s?)y = 2Ll p
n
As before it will be assumed that the Xi are independent
normal variables with the population parameters given above.
Because of the time varying population parameters, it
will be necessary to utilize normalized variables in order

to obtain the sampling distribution of certain sampling

characteristics. Consider the variable

Y, = Ci(Xi - M) (5.6.12)

Q
'—l.
H
$|
ket
|

where
such that cle. = pTl ana CTlAexists.
ivi i i
i
Then e(¥Y") =0
e(Y.YY) = I
iti

The elements of Yi are independent zero mean unit variance
normal variables, with Yi independent of Yj for i # j.

Define



After some manipulation, it can be shown that

n
2 _ 1 E: = =_ = =_ T
S = = [(cixi CX) + M(C ci)][(cixi CX) + M(C ci)] (5.6.13)
i=1
n
where Cc A1 }: C.
n 1
i=1
n
cx &l C.X.
n 1l 1
i=1

It can be shown that

1) ¥ is a r dimensional zero mean normal variable with
covariance I/n.

n LTS'2L

LTL

distributed variable with n-1 degrees of freedom.

2) for any fixed L, is a central chi square

3) Y and s'? are independently distributed.

/AT 1%
VLTS'ZL
distributed variable with n-1 degrees of freedom.

4) for any fixed vector L, is a Students'

The hypothesis that M = Mo and Pi = Poi can be tested in a
fashion analogous to the tests outlined in this section for
time invariant distribution parameters, except that now the

test variables are

.Y
t_:———-—.]_ j

1,..,r (5.6.14)
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x2 = —3 31 (5.6.15)

5|

= =T
Z (¥, %) (¥, -7)
i=1

where S'° =

|
]
Sl

C . (X,-M))
oi "1 o
1

1

C =VP—:.L

oi oi

n

It can be seen that both (5.6.14) and (5.6.15) are
functions of the sample values Xi and the values of MO and
and PiO unless Pio is time invariant. Therefore tests using
these test variables do not provide independent tests of
the mean and covariance. However, both variables can be used
for testing the hypothesis M = MO and Pi = P, , where MO and

10

Pio are specified values. Rejection of the hypothesis by
either test can imply that M # MO or Pi # Pio or both.
However, even though the tests are not independent, it can be
shown that the mean test is more sensitive to departures from
the mean hypothesis than from the covariance hypothesis, and
conversely for the covariance test.

As in the case of time invariant population parameters,
the sample characteristic (5.6.14) and (5.6.15) are not the
only characteristics which might be used to test hypotheses

on the mean and covariance of X. In a manner analogous to

the previous work, define
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n
2 _ 1 T, _ oTs
s? = L Z (viv, - 7°9) (5.6.16)

t = ————— (5.6.17)

where here

Y
]
(@]
e
X
(4
1
g

[on
Il
B

Y

Z Y7
1

j=1

S
I
=1l

n

Y o,
1

i=1

As before, nr 52 has a chi square distribution with n-1
degrees of freedom, and t has a Students' distribution with
n-1 degrees of freedom. By use of these sampling character-
istics, the null hypothesis M = MO and Pi = Pio can be tested.
The proper test variables for this test are (5.6.16) and
(5.6.17) with MO replacing M and Pio replacing Pi' The two
tests are not independent tests of the mean and covariance
so caution should be employed in interpreting the results

of such tests.

5.7 Application of Hypothesis Tests to Maximum Likelihood

Stage_Estimation

In Chapter 2, the recursive maximum likelihood state

estimation equations were derived for a linear dynamical
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system. These equations were derived under the following

assumptions:

1) the measurement and driving noises are independent,

zero mean normal variables.
2) the covariance of the noises are known precisely.
3) no computational errors are made.

4) all of the parameters describing the dynamical

system and the linear measurement are known precisely.

If all of these assumptions are valid, it can be shown that
the measurement residual at any time k
é A

s e N ]

Az

is a zero mean normal variable, independent of the residuals

at times other than k, with conditional covariance

_ T
By = R + HePrix-1Px

where Azk and Bk are computed using values of the noise

covariance parameters assumed known by the previous assumptions.
It can be seen that the variable Azk is just such a

variable upon which the tests of the mean and covariance

given previously can be applied. Which set of tests is

applied depends upon:
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1) computational limitations

2) desired power of the tests

3) the dimension of the residual

4) whether the estimation equations have reached a

steady state such that B, is approximately constant,

k
so that the population parameters of the residuals
are time invariant

5) the need to isolate which component of the residual

satisfies or violates the underlying assumptions

If the residuals fail the hypothesis tests, the tests
themselves do not tell why, but merely indicate that one or
more of the assumptions is probably in error. It is up to
the analyst to isolate which of the assumptions is likely
to be in error and make adjustments in the assumptions until
the residuals pass the required hypothesis tests.

If all four of the previous assumptions are considered
as the null hypothesis to be tested, it is most difficult to
compute the power of the tests under deviations from the null
hypothesis. In order to compute the test power, the distri-
bution of the sample characteristics under deviations from
the null hypothesis must be found. This is very difficult
to do for very general deviations from the null hypothesis.
Only when possible deviations from the null hypothesis are
relatively simple, say errors in the covariances of the
noises, can power of the test be computed. Even then, when
the residuals are vector valued with time varying conditional

covariance, the computation of the test power is most
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difficult. However, even if the test power is not known
accurately, it can be expected that the tests will indicate
significant deviations from the null hypothesis, which is
the primary purpose of such tests.

The measurement residual is not the only observable
random variable upon which hypothesis tests can be based.
Consider the situation when the values of R and Q used to
compute the state estimation weighting matrices may be in
error. It is desired to test a hypothesis concerning the
values of these parameters. In Chapter 3, it was shown that
the score

aLn(Zn,u)

Sn(zn’a) on

evaluated at the true value of the parameters o is asymp-
totically normal with zero mean and covariance Jn(ao),
where o is the true value of a. In the case of state and
noise variance estimation, the parameter set o consists of

11 11
AU -2 (e o LLLL W

the state X and the vector ET = (R
If the score is computed as a function of the measurements
and the a priori values of R and Q, a large score will
indicate that the a priori values of R and Q are probably
in error.

Only those components of the score corresponding to
differentiation by & are useful in testing the hypothesis
on R and Q because it was seen that
aLn(Zn,a)

X
n 90X
n

>

S
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evaluated at the estimated value of X, is identically zero,
regardless of the true value of R and Q. However, the
guantity

3L (2 ,a)
EA "™n n’
Sn = ————gg——— (5.7.2)

is a useful indicator for testing the hypothesis. If the

null hypothesis R = Ro and Q = QO is true, then Si is

asymptotically a zero mean normal variable with covariance

: IL_ T 3L_
COV(Sn) = € a—g— 35_ |an€
2 35 (a)

There are two functions of the score (5.7.2) which

might be used for hypothesis testing. Define
t =c_ s (z g)
n  n n’
where C_ = JE(E)_l

Then each component of the vector t is asymptotically an
independent zero mean unit variance normal variable. Tests
on t can be conducted using the results of tests on the mean
of a random variable with known variance. A significant t
will indicate that one or more elements of the a priori

values of R and Q are in error.
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Another possible test variable is defined by

It can be shown that under the null hypothesis, X2 is asymp-
totically a central chi square random variable with r degrees
of freedom, where r is the dimension of the vector £. Tests
on this variable can be conducted using the results of tests
on the variance previously outlined.

It is difficult to assess the relative power of these
two tests under deviations from the null hypothesis. Even if
the distribution of the score under deviations from the null
hypothesis could be found, the power of the tests could be
found only after great computational expense. However these
tests do have the distinct advantage of using test parameters
which allow a determination of the first linear correction in
the a priori values of R and Q if the hypothesis test fails,
using the results of the linearized maximum likelihood solu-

tion discussed in Chapter 4.
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Chapter 6

NUMERICAL RESULTS

6.1 Introduction

Theoretical results about various techniques for esti-
mating noise covariance parameters and testing statistical
hypotheses have been developed in the preceding chapters.
This chapter is devoted to a discussion of the results of a
digital computer simulation of the eguations derived. The
purpose of this simulation is twofold. The theoretical
results must be checked to ensure that they accurately portray
the situation. Once the validity of these results is
established, a numerical comparison of the various techniques
for estimating the noise covariance parameters will be made
to determine the trade-offs involved in using simpler but
less accurate methods of estimation.

The principal theoretical results that are to be checked

are:

1) convergence of the iterative maximum likelihood
solution

2) the unbiasedness of the maximum likelihood solution

3) comparison of the actual mean squared estimation
error of the maximum likelihood solution with the
inverse information matrix

4) the range of applicability of the linearized

maximum likelihood solution
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5) convergence of the near maximum likelihood solution
6) comparison of actual mean and mean squared estimation
error of the explicit suboptimal solution with the

theoretical expressions for the quantities
7) the sensitivity and power of hypothesis testing in

realistic situations

The system simulated was purposely made simple. Many
of the estimation equations are very complex and require
iterative solutions. Only by limiting the complexity of the
system and the number of parameters to be estimated could
the required computations be kept within reasonable limits.

In checking the above theoretical results, Monte Carlo
simulations are required. Many trials are required in which
actual noises and realistic parameter values are simulated,
this being a time consuming and expensive procedure. However,
once the theoretical results are established, then Monte Carlo
simulations are not required, thus allowing statistical simu-
lation in which only the expressions for the mean and mean
squared error of the estimates are computed, resulting in the
ensemble average of the results that would be obtained if a

large series of Monte Carlo simulations were performed.

6.2 Description of System and Measurement

The system simulated is a second order damped oscillator
with time invariant damping ratio and natural frequency,
driven by stationary zero mean uncorrelated normally distri-

buted noise. The state of the system is defined as a two
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component column vector of the position and velocity coor-

dinates of the system.

X, = <I>(n,n-l)xn_l + Fn W
where X is the state at time "n"
X 1 is the state at time "n-1"

d(n,n-1) is the 2 x 2 state transition matrix

w_ 1s either a scalar or 2 x 1 column vector

driving noise

I' is either a 2 x 1 or 2 x 2 forcing function

matrix
Q is the driving noise covariance matrix

The state transition matrix obeys the differential
equation

d@(t,to)

3E = F(t) @(t,to), @(to,to) =TI

For a second order oscillator with time invariant parameters,

-Q =270

where ¢ is the damping ratio and Q is the system natural

frequency.
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The measurement of the state is either a scalar or a

2 x 1 column vector defined by

where H is a 1l x 2 or 2 x 2 time invariant measurement

matrix
v_ is a scalar or 2 x 1 column vector measurement
noise
R 1is the measurement noise covariance matrix
In the simulation of variance estimation, the values of

the diagonal elements of the measurement and driving noise

covariance matrices are chosen from a Gamma distribution as

described in Chapter 3.

6.3 Effect of Incorrect Noise Covariance Parameters Upon

Maximum Likelihood State Estimat}on

In Section 2.3 equations were derived for the evaluation
of the performance of a maximum likelihood state estimator
when incorrect values of the measurement and driving noise
covariance matrices are used in the computation of the mea-
surement residual weighting matrices. It was shown that even
if incorrect values of the noise parameters are used, the
maximum likelihood estimator remains unbaised. However, the
covariance of the estimation error is a function of the errors

in the noise parameters. In this simulation the "true" and
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"computed" state covariance matrices are calculated as
functions of the true and assumed values of the measurement

and driving noise covariance matrices,

From (2.3.39) and (2.3.42), the computed state covari-

ance matrix obeys the recursive relationships

* * * * B * _k %
P = (I-A_H )P (I-A_H ) + A R A
n|n nn’ n|n-1 n'n n n
P’ =0 e’ 0T 1 *rT
n|n-1 "~ (n,n- n-1|n-1 (n,n-1) + TQ0 Ty
x T, % * T, -1
Ay T Paln-1 B R+ H Pnin-1 H)

* *
where R and Q are the assumed values of the measurement and

driving noise covariance matrices.
From (2.3.43) and (2.3.44), the true state covariance

matrix obeys the recursive relationships

p T

* * T * *
(I-A_H_)P (I-A_H ) + A_ R A
n|n nn’ n|n-1 nn n n

T T
¢(n,n=-1)P ¢ (n,n-1) + Fn Q Pn

Paln-1 = n-1|n-1

where R and Q are the true values of the measurement and

driving noise covariance matrices. It is assumed that
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The following graphs show the variation in the trace of
the true and computed covariance matrices after the last
measurement as a function of the estimated values of R and Q.
For simplicity the measurement and driving noises are scalar
random variables and the time interval between measurements

is constant. The parameters of the system and the measure-

ments are:

z = .05, = .1 rad/sec
T
Hn= (1,0), Fn= (Oll)
Time between measurements = 1 sec

Total number of measurements = 200

10 0

For the values of the system and noise parameters chosen,
the covariance equations reach a steady state after
approximately 10 measurements.

It should be noted that each of the two diagonal
elements of P:ln had the same general variation with R*
and Q* as the trace of P;In' For simplicity, only graphs

* * *
of the trace of Pnln versus R and Q are shown.
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As can be seen, the trace of the true state estimation
error covariance matrix Pnln is not highly sensitive to
errors in the estimated values of R or Q. This means that
the estimation error is not highly sensitive to use of
incorrect values of R and Q in the computation of the measure-
ment residual weighting matrices. However, the trace of the
computed state estimation error covariance matrix P;|n is a
strong function of errors in R and Q. This means that for
moderate errors in R and Q, the computed covariance matrix
is a poor representation of the actual state estimation error
covariance. Although the actual error covariance may be

* *
small, there is no way to know this unless R and Q are very

near the true values of R and Q. Therefore any decision made
*

about the probable state estimation error using Pnln

may be

*
incorrect due to the large difference between Pn|n and Pn|n'

6.4 Comparison of State and Noise Covariance Estimation

Procedures

Four procedures for estimating the state and noise

covariance parameters are simulated and compared:

1) maximum likelihood
2) linearized maximum likelihood
3) near maximum likelihood

4) explicit suboptimal

The simulations are divided into two parts, Monte Carlo

simulations and statistical simulations.
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Maximum Likelihood and Linearized Maximum Likelihood

The equations for the simultaneous estimation of the
system state and noise covariance parameters with a priori
information about the state and noise covariance were solved
by the iterative procedures of Section 3.6. In Chapter 3,
it was shown that the asymptotic distribution of the R and Q
estimation error is a zero mean normal distribution with
conditional covariance Wn(E), where W;l(a) is a submatrix of

the conditional information matrix, and

ET = (Rlll--rRYYrQllr--ian)
T
1 BLﬁ aLﬁ ]
W@ = elsr] I8

In an actual situation, the above matrix cannot be computed
because the true value of £ is unknown. However, it is
usually a good approximation to compute W;l at the estimated
value of £ if a measure of the R and Q estimation error
covariance is desired. All evaluations of the conditional
information matrices in this section are at the true value
of £.

In the case of scalar R and Q, wn(g) is a 2 x 2 matrix

with elements

e[ (AR) %] e[ (ARAQ) ]
W_(E) =
2
e[ (ARAQ) ] e[ (0Q) 2]
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where AR and AQ represent the R and Q estimation error. The
square root of the appropriate diagonal element of wn(g) is

the standard deviation of the corresponding noise covariance
parameter asymptotic estimation error. The normalized esti-

mation error can then be defined by

(6.4.1)

where ﬁ is the estimate of R on a given trial, R is the true
value of R on that trial, and cﬁ is the standard deviation of
the error as given above. A similar expression is used to
define the normalized Q estimation error.

In order to check the theoretical unbiasedness and
covariance of the estimates, the mean and mean squared error
of the estimates over the ensemble of trials is computed and
compared with the mean of the true values of R and Q and the

average conditional information matrix. The average R is

defined by

K
ave (R) =il<- Z R; (6.4.2)
j=1

h

where Rj is the value of R on the jt trial and K is the

number of trials. A similar expression is used to compute

ave (Q). The average of R is defined by
K
~ _ l A
j=1
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where ﬁ. is the value of E on the jth trial. A similar
expression is used to compute ave(é).

The theoretical mean squared estimation error, averaged
over the ensemble of all possible R and Q, was given in

Chapter 3 by

|
=

EL(E - £) (£ ~ &)T]

=,£2 w_(g) £(g) 4g

As was noted, the above integral is difficult to compute. An
easier to compute and possibly better measure of the average
conditional covariance over the ensemble of values of &£

actually experienced in the trials would be

K

= 1

W=z Z wn(gj) (6.4.4)
j=1

where gj is the value of & on the jth trial. The actual

mean squared estimation error matrix is defined by
K
1 E: z 2 T
= .- EL)(EL - EL 6.4.5
i (Ej Ej) EJ EJ) ( )
j=1

Similar expressions are used to compute the mean and
mean squared estimation error of the linearized solution of
the likelihood equations. The conditional information matrix
associated with the linearized solution is computed at the

a priori values of R and Q. If these values are not close to
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the true values, the information matrix computed at the a priori

values may not accurately
mation error covariance.

measure of the estimation
available for a real time
the information matrix at

Figure 6.5 and Table

sample Monte Carlo simulation.

represent the inverse of the esti-
However, it represents the best
error covariance that would be
solution without having to recompute
the linearized estimates of R and Q.
6.1 give the results of a ten

The system and measurement

parameter values are those previously given, while the true

values of R and Q are different on each trial.

are selected from a Gamma

The values

distribution with

E(Q) = Q = 0.5

E[(Q - D)%] = 0.25

If there was no estimation error, the estimates of R

and Q would lie along the
The dispersion about this

tion error.

diagonal line R = R and Q = Q.

line is a measure of the estima-

Shown in Table 6.1 are the standard deviation of the R

and Q estimation error and the normalized estimation error

defined by (6.4.1). Also

linearized maximum likelihood solution.

shown are the results of the

The estimates of R

and Q are those obtained on the first iteration of the optimal

solution.

As described in Section 4.2, the linearized solu-

tion represents an estimate of R and Q that can be obtained
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in real time. The initial estimates of R and Q were equal
to the means of their respective distributions. As can be
seen, the linearized solution is quite close to the iterative
solution even for large departures of the true values of R
and Q from the initial estimates which were used to compute
the score and conditional information matrices.

Figure 6.6 and Table 6.2 show the results of another
set of ten Monte Carlo trials with a different set of random
numbers used to simulate the noises and a different set of

values of R and Q chosen froma Gamma distribution with
E(R) = 10, E@Q) =1
=2 = 2
E[(R - R)®] = 100, E[(Q - Q)°] =1

Again the actual mean and mean squared estimation error
over the ensemble of ten trials were computed and compared
with the theoretical results., It can be seen that the mean of
the estimates compares quite well with the mean of the actual
values of R and Q. However, there is a rather large differ-
ence between the theoretical and actual mean squared estimation
error matrices. This is a hazard of trying to compute ensemble
statistics on the basis of ten samples. Almost all of the
actual mean squared R estimation error comes from Sample 7, the
error being nonrepresentative of the expected error. The actual
error was a 2.57 sigma error based upon the standard deviation
obtained from the conditional information matrix. Omitting this
sample from the ensemble averages results in good agreement be-

tween theoretical and actual mean squared errors.
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Table 6.1 Monte

Sample

10

Average

Carlo Run 1:

Maximum Likelihood

and Linearized Maximum Likelihood Solutions

R
0.860
1.599
0.522
1.288
0.526
0.102
0.304
1.718
0.160

0.484

.756

Theoretical Mean Squared Estimation Error

M.L. R
0.979
1l.461
0.384
1.276
0.404
0.096
0.291
1.470
0.188

0.523

.700

Linearized
C 0.0184 -0.0039
-0.0039 0.0101

0.118
0.207
0.074
0.165
0.092
0.021
0.047
0.200
0.052

0.092

0.107

+1.014
-0.670
-1.876
-0.074
-1.322
-0.276
-0.288
-1.386
-0.807
+0.425

-0.526

Iterative
0.0152 -0.0035
|-0.0035 0.0163

Actual Mean Squared Estimation Error

Linearized
( 0.0121 -0.0034
L—0.0034 0.0233

Iterative
0.0133 -0.0034
-0.0034 0.0204
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Lin. R
0.978
1.449
0.391
1.286
0.394
0.096
0.317
1.489
0.128

0.514

.704



Table 6.1 (Continued)

Sample
1

2

10

Average

Q
0.456
0.512
0.330
0.360
0.997
0.327

0.329

M.L. 6
0.445
0.484
0.447
0.498
1.286
0.308
0.328
0.128
1,194
1.242

.641

~

0.093
0.111
0.066
0.079
0.174
0.056
0.062
0.037
0.221

0.209

0.111
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Monte Carlo Run 1

~

o)
-0.115
-0.260
+1.770
+1.740
+1.665
-0.345
-0.009
-0.480

-1.325

-0.004

+0.264

0>

Lin.
.450
.483
.463
.483

1.264
.362
. 336
.120

1.133

1.214

.636



Table 6.2 Monte Carlo Run 2: Maximum Likelihood
and Linearized Maximum Likelihood Solutions

~

Sample R M.L. ﬁ oﬁ eﬁ Lin. R
1 8.231 7.584 1.120 -0.606 8.882

2 8.104 6.176 1.013 -1.900 6.303

3 10.359 8.369 1.123 -1.770 8.200

4 5.362 5.838 0.558 +0.855 5.283

5 14,526 17.012 1.780 +1.400 16.907

6 11.753 10,514 1.375 -0.900 10.522

7 37.523 27.297 3.980 -2.570 28.399

8 29,982 28.551 3.290 +0.436 30.378

9 10.499 11.929 1.316 +1.090 11.942
10 19.663 20.205 2,135 +0.254 18.914
Average 15.599 14.349 1.769 -0.371 14,543

Theoretical Mean Squared Estimation Error

Linearized Iterative
1.420 -0.049 4,191 -0.092
-0.049 0.063 -0.092 0.163

Actual Mean Squared Estimation Error

Linearized Iterative
10.152 0.179 12.494 0.425
0.179 0.274 0.425 0.115
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Table 6.2 (Continued)

Sample
1

2

10

Average

Q
3.985
1.677
0.089
0.002
2.476
0.923
0.614
0.906
2.361

0.255

1.329

M.L. Q
3.237
l.461
0.044
0.002
2.833
1.047
0.786
0.878
2.895
0.211

1.339

Monte Carlo

~

0.828
0.385
0.029
9 x 10~
0.582
0.750
0.188
0.260
0.537

0.080

0.334
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Run 2

~

o)
-0.093
-0.562
-1.530
+0,000
+0.614
+0.165
+0.915
-0.017

+0.995

-0.547

~-0.087

Lin. Q
2,784
1.422
0.088
0.046
3.164
1.048
0.637
0.592
3.134

0.455

1.337



Runs 3 and 4 and the corresponding Tables 6.3 and 6.4
are the results of the above two runs repeated except that
the values of R and Q are held fixed at the same values on
each trial. Different random numbers were used to simulate
the measurement and driving noises. These runs simulate an
ensemble of trials with a fixed value of 50, so that the
conditional information matrix is the same for each trial.
Then the theoretical mean squared estimation error is given
by Wn(go), where go is the value of £ for every trial.

The agreement between the sample mean and mean squared
estimation error and the theoretical results is guite good
for both runs. A better correspondence between theoretical
and actual results is expected in these runs than in the first
two runs because the ten trials in each of these runs are
samples from an ensemble of trials with different noises but
with the same noise covariances. The first two runs were
samples from an ensemble with different noises and different

noise covariances.
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Table 6.3 Monte Carlo Run 3:

Maximum Likelihood

and Linearized Maximum Likelihood Solutions

Sample R
1 1.0

2 1.0

3 1.0

4 1.0

5 1.0

6 1.0

7 1.0

8 1.0

9 1.0
10 1.0
Average 1.0

Theoretical Mean Squared Estimation Error

M.L. R

1.130
1.295
. 982
1.106
.921
.936
.821
. 807
.908

1,043

.995

Linearized
.0184 -.0039
-.0039 .101

Actual Mean Squared Estimation Error

Linearized
.0197 -.0076
-.0076 .0118

0.136
0.136
0.136
0.136
0.136
0.136
0.136
0.136
0.136

0.136

0.136

-.0036

~.0084
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+0.96
+2.18
-0.13
+0.78
-0.58
-0.47
-1.32
-1.42
-0.72

+0.32

-0.04

Iterative
-.0036

.0096

Iterative
-.0084

.0140

~

Lin. R
1.134
1.286
. 977
1.110
.935
.934
.810
.810
.939

1.038

.998



Table 6.3 (Continued) Monte Carlo Run 3

Sample Q M.L. 6 06 ea Lin, 6
1 .50 .421 .101 -0.79 .418

2 .50 .357 101 -1.43 .358

3 .50 .534 .101 +0.34 .537

4 .50 . 495 .101 -0.05 .490

5 .50 .392 .101 -1.08 .387

6 .50 .556 .101 +0.56 .549

7 .50 .575 .101 +0.75 .587

8 .50 .465 .101 -0.35 471

9 .50 .712 .101 +2.12 .672

10 <50 .287 .101 -2.13 +304
Average .50 .479 .101 -0.21 .478
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Table 6.4 Monte Carlo Run 4: Maximum Likelihood

and Linearized Maximum Likelihood Solu

Sample R M.L. ﬁ On ep

1 10.0 10.812 1.185 +0.715

2 10.0 9.527 1.185 -0.291

3 10.0 9.872 1.185 -0.105

4 10.0 9.750 1.185 -0.236

5 10.0 11.624 1.185 +1.330

6 10.0 11.385 1.185 +1.210

7 10.0 12.195 1,185 +2.120

8 10.0 11.748 1.185 +1.510

9 10.0 7.757 1.185 -0.985
10 10.0 9.761 1.185 -0.905
Average 10.0 10.443 1.185 +0.374

Theoretical Mean Squared Estimation Error

Linearized ITterative
1.405 -.059 1.503 -.050
- .059 .058 - .050 .011

Actual Mean Squared Estimation Error

Linearized ITterative
1.970 -.321 1.848 -.296
- .321 .106 - .296 .107

250

tions

~

Lin. R
10.858
9.658
9.876
9.721
11.573
11.437
12,514
11.781

7.831

9.893

10.514



Table 6.4 (Continued) Monte Carlo Run 4

Sample
1

2

10

Average

.785
.721
.648
1.461

.494

.860
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~

Q

e

~1.510
-0.105
+1.430
-1.200
~0.905
~1.170
~1.480

+1.930

-2.120

~0.590

Lin.
.814
.637
.976

1.329
.737
.776
.645
.654

1.413

.502

Q

. 848



In Runs 1-4, the measurement and driving noise covariance
matrices are scalars. In Run 5, both R and Q are 2 x 2
matrices, so that four noise covariance parameters are to be
estimated, the diagonal elements of R and Q. Figures 6.9 and
6.10 and Table 6.5 show the results of a ten sample Monte
Carlo simulation.

As before, the theoretical and actual mean and mean
squared estimation error matrices were computed. Now the
mean squared estimation errors (both theoretical and actual)

are 4 x 4 matrices, with elements

— —_—

(4R )?  TER_IR) TER_A0)  (AR_AQ;)
TEEE  (R)?  TEEE0Y  TERAO])
B0 AR)  TROAR,)  (s0)°  TBQ.BQ,)

| TOPRY TRoE) TEG;AQ) o2 |

where AR and AQ represent the R or Q estimation error and the
bar over these quantities indicates either the theoretical
or actual mean, depending upon which matrix is given.

As can be seen, increasing the number of quantities to
be estimated did not degrade the performance of the estima-
tor. Of course, the number of computations needed to estimate
four covariance parameters is considerably greater than that

needed to estimate two covariance parameters.
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Table 6.5 Monte Carlo Run 5:

Maximum Likelihood

and Linearized Maximum Likelihood Solutions

Sample RO
1 13.857
2 2.137
3 0.483
4 14,717
5 4,553
6 44.597
7 2.692
8 1.963
9 2.698
10 3.972
Average 9.167

Theoretical Mean Square

3.086
-0.166

-0.383

| 0.037
E(RO)
E(Rl)
E(QO)
E(0;)

M.L. R
(¢}

11.806
1.887
0.313

15.512
4.677

47.657
2.778
2.865

2.281

4.106

9.358

-0.166
3.824
-0.692

0.047

10,
10,

10,

E[ (R
E[ (R,
E[(Q
EL(Q,

254

Oﬁo
1.578
0.598
0.452
2.013
1.030
4.610
0.546
0.636
0.724

0.467

1.265

0.383
0.692
6.302

0.621

{
|
=

I
Ol

0.

0.

-0.

0.

A

RO
-1.300

-0.416
-0.376
+0.396
+0.120
+0.665
+0.157
+1.410

-0.575

+0.287

+0.037

037
047

621

325J

100
100

100

~

Lin. RO
11.836
2.373
5.000
15.047
4,243
46.803
2.917
2.407
2.475
4.089

9.772

Estimation Error Matrix



Table 6.5 (Continued)

Sample
1

2

10

Average

Ry
2.937
8.702
8.325

31.170
44.397
5.500
0.953
2.823

7.598

1.473

11.388

M.L. ﬁ
3.115
9.063
8.690

35.171

40.871
4.835
0.654
2.636

8.785

1.146

11.450

1

Actual Mean Squared

[ 1.551
~0.043

1.101

| -0.055

-0.,043

3.070

-1.626

0.165

255

1.032

0.272

1.464

Monte Carlo Run 5

~

1

eﬁl Lin. R
+0.237 3.892
+0.340 8.619
+0.400 9.639
+1.180 34.572
~0.800 40.560
-0.415 6.464
-0.630 1.349
-0.280 1.924
+1.150 8.317
-1.200 1.146
-0.002 11.648

Estimation Error

1.101

-1.626

4.305

-0.289

~-0.055

0.165

-0.289

0.618




Table 6.5 (Continued)

Sample

10

Average

%

4,550
7.568
13.596
1.551
0.621
14.583
25.451
29.335

13.677

1.052

11.198

M.L. Q

2.953
8.962
13.824
0.735
2.249
15.668
26.445
34.589

11.912

o]

1.424

11.876

256

Monte Carlo Run 5

0>

2.135
1.732
2.480
2.450
2.410
3.660
2.980
3.250
2.040

0.610

2.375

eQO
-0.750
+0.803
+0.311
-0.333
+0.675
+0.295
+0.334
+1.640

-0.864

+0.610

+0.272

Lin. Q

5.000
8.707
17.180
0.306
4.077
13.408
24.907
33.971

11.433

1.398

12.039



Table 6.5 (Continued)

Sample

10

Average

Q

4,255
1.568
5.173
1.355
3.357
1.218
0.662
0.180
0.328

0.864

1.896

M.L. Ql

4.183
1.488
7.393
1.050
2.482
1.523
0.421
0.021

0.433

0.741

1.978

1.043
0.411
0.762
0.451
0.316
0.123
0.164

0.228

0.487
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Monte Carlo Run 5

-0.083
-0.169
+2.100
-0.742
-1.150
+0.744
-0.764
-1.280

+0.641

-0.540

-0.134

5.641
1.423
6.742
1.032
2.223
1.502
0.196
0.564

0.656

0.751

2.073



A further check was made concerning the hypothesis that
the R and Q estimation errors are zero mean normally distri-
buted random variables with conditional covariance Wn(R,Q).
Under this hypothesis, the normalized errors ep and eQ are

zero mean unit variance and normally distributed. Define
K
J
®R

J

K

2 1 i =2

SR‘EZ (ex — eg)
j=1

1

where el is the normalized R estimation error on a given

R
trial and K is the number of trials. Similar expressions
are defined for the Q estimation errors. From Chapter 5,

under the above hypothesis, er

buted variable with variance (1/K) and K sé is a chi squared

is a zero mean normally distri-

distributed variable with K-1 degrees of freedom, with mean
(K-1) and variance 2K. ER’ Eé, si, and sé were computed for
each of the ten sample Monte Carlo trials previously presented.
In most cases, their computed values were within one standard
deviation of their expected values under the above hypothesis.
Therefore, the variations of the computed gquantities about
their means were within that which would be expected due to

the relatively small sample size and the above hypothesis can

be reasonably accepted as a valid hypothesis.

Near Maximum Likelihood

In Section 4.3 a near maximum likelihood solution for

estimating the state and noise covariance parameters was
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given. In this solution certain terms in the likelihood
equations and the conditional information matrix were omitted
and the solution of the resulting "pseudo likelihood equations”
sought.

The solution of these equations was attempted using the
iterative procedure of Chapter 3, whereby the conditional
information matrix was used as the negative gradient of the
likelihood equations. Serious difficulty was encountered in
implementing this solution. The information matrix given by
(4.3.2) was nearly singular for the system and measurement
schedule under study, resulting in an unstable iterative
procedure. A different technique was then used to attempt
to find a solution point of the pseudo likelihood equations.
Essentially, the procedure was to evaluate the score as a
function of the a priori values of R and Q for a given value
of the true R and Q. The solutions for En and én were the
values of ﬁo and éo which produced the smallest magnitude of
the score. A sufficient number of values of ﬁo and éo were
chosen to reasonably ensure that ﬁn and 5n produced the
smallest or near the smallest magnitude of the score.

It was found that the solution point agreed guite well
with the solution point of the full likelihood equations just
given., In other words, the solution of the pseudo likelihood
equations is a good estimate of the noise covariance parameters
but a different technique of solution must be used when the

information matrix associated with the pseudo likelihood

equations is nearly singular. So the computational simplification

259



obtained by omitting certain terms in the likelihood function
and information matrix is offset by the need for a more com-
plicated algorithm for finding the solution to the likelihood
equations.

Whenever the information matrix is singular or nearly
singular, there is a real question as to whether there is a
unique solution of the likelihood equations. In the case
mentioned above, instead of a single point where the magnitude
of the score is minimized, there may exist a line in ﬁo and
60 space along which the magnitude of the score is small and
remains essentially constant. In such situations it is
impossible to distinguish between errors in the estimates
of R and errors in the estimates of Q.

From the limited simulation of the near maximum likeli-
hood solution it is felt that for the system and measurement
schedule used, a unique solution of the pseudo likelihood
equations does exist. However, finding the solution point
requires considerable trial and error. Because of this
complication, no series of runs was conducted in which the
pseudo likelihood equations were solved. From the few trials

that were conducted, it is felt that the solutions are quite

close to the solutions of the full likelihood equations.

Explicit Suboptimal

The explicit suboptimal solution of Section 4.4 was
simulated so that it could be compared with the maximum
likelihood solution. A series of runs was made that corre-

sponds to the series made of the maximum likelihood solution.
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Identical random numbers were used in the simulation of the
noises so that a meaningful comparison could be made.

In Section 4.4, expressions for the theoretical condi-
tional and unconditional mean and mean squared R and Q
estimation error were developed., The conditional mean of the

R estimation error was given by
e (R33 _ gIIy = g3
n n
and the conditional mean of the Q estimation was given by
533 _ o3dy = y3T
e (Qy Q--) M2

where Fn and Mn are defined in Section 4.4. The conditional

mean squared R and Q estimation errors were given by
el®7 - B2 = eI - @I+ e@) - rI))2
n n n n
= clJ + (gl3y2
n n
33 _ 433,2, _ 33 _ JJyy2 33 _ 533442
E[(Qn Q") "1 €[(Qn E(Qn )71+ [e(Qp Q") 1
= 737 4+ (332
n n
where Gn and J are defined in Section 4.4. Note that Jn

given here is not the conditional information matrix of the

maximum likelihood solution, Fn and Mn represent the bias
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of the estimators and Gn and U represent the variance of
the estimators about the biased values.

One of the purposes of this simulation is to check the
validity of the above expressions. To do this, the follow-

ing variables are defined.

2 _ 233 _ o (rJIyy2
Oﬁjj = e[(Rn e(Rn 1) 7]
2 _ 33 _ o633y 2
oAjj e[(Qn E(Qn )) 7]
Q
rIJ - ¢ (r3I)
e .. = n n
Jj OA'-
R rJJ
~33 _ _(&33
. _ QL e(Q”)
33 PN
Q QJJ

If the expressions for the conditional means of ﬁgj and 6gj
are accurate, the normalized errors eRjj and erj should be
zero mean unit variance random variables.

In maximum likelihood estimation, the unconditional
mean squared error is usually a nonanalytic function.
However, in the case of explicit suboptimal estimation, an
analytic expression for the unconditional mean squared error
was found. Because of the relatively small sample size,
this expression is not used. The theoretical mean squared
estimation error for R and Q that is shown in the tables is
defined as the average conditional mean squared estimation

error, averaged over the ensemble of values of R and Q

actually encountered. This is the same definition of the
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theoretical mean squared estimation error that was used in
the evaluation of the maximum likelihood estimator. When R
and Q are scalars, the theoretical mean squared estimation

error is defined by

K
j=1

where here R, is the estimate of Rj on the jth trial and Rj
is the true value of R on that trial. A similar expression
is used for the theoretical mean squared Q estimation error.

The actual mean squared R estimation error is defined by

K
~ 2
R. - R,

). Ry Ry

j=1

with a similar expression for the actual mean squared Q

R

estimation error.

In runs 6 and 7 the values of R and Q were selected
from a Gamma distribution with the same population charac-
teristics as runs 1 and 2 respectively. The a priori
estimates of R and Q were chosen to be the theoretical means
of the appropriate Gamma distribution,

Several things can be seen from an examination of
Figures 6.11 and 6.12 and Tables 6.6 and 6.7. First, there
is good agreement between the actual values of ﬁ and 5 and
their conditional means. There is also good agreement between
the theoretical and actual mean squared estimation error as

defined above. This tends to substantiate the validity of the
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expressions developed in Chapter 4.

The second thing to notice is that the estimates of R
and Q are biased towards the a priori values of ﬁo and 60.
The estimates are to a large degree independent of the actual
values of R and Q on any given trial. Unlike the maximum
likelihood estimator, the explicit suboptimal estimator
remains biased even when the number of measurements becomes
large. This will become even clearer later when the condi-

”~

tional means of ﬁ and 6 are computed as functions of Ro and
60 for fixed true values of R and Q.

In runs 8 and 9, the true values of R and Q were held
fixed on each sample at the means of their respective distri-
butions. As can be seen from Figures 6.13 and 6.14, when

the a priori values of R and Q are equal to the true values

of R and Q, the estimates R and Q are quite closely grouped
about the true values. Runs 10 and 11 are repeats of runs 6
and 9, except that the a priori values of R and Q were not

equal to the means of the respective distributions of R and

Q. For run 10, R = 2.0, 9 = 1.0 whereas R=1.0, 0 = 0.5,
and for run 11, R, = 20, 9, = 2 whereas R = 10, Q = 1. Again

it can be seen that the estimators for R and Q are biased if

the a priori values of Ro and Qo are not equal to the means

of their respective distributions, exactly as predicted.
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Table 6.6 Monte Carlo Run 6:

Solution
Sample R ﬁ
1 0.860 0.993
2 1.599 1.099
3 0.522 0.879
4 1.288 1.060
5 0.526 1.054
6 0.102 0.797
7 0.304 0.834
8 1.718 1.029
9 0.160 0.970
10 0.484 1.068

Average 0.756

Theoretical Mean Squared R Estimation Error:

0.978

E(ﬁ)

0.965
1.115
0.878
1.027
1.006
0.798
0.837
1.067
1.031

1.046

0.977

R
0.0252
0.0403
0.01l64
0.0315
0.0291
0.0084
0.0123
0.0355

0.0317

0.0332

0.0264

Actual Mean Squared R Estimation Error:
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Explicit Suboptimal

v I

+1.110
-0.398
+0.061
+1.050
+1.650
-0.120
-0.244
-1.070
-1.920
+0.665

+0.079

0.294

0.296



Table 6.6 (Continued)

Sample Q

1 0.456
2 0.512
3 0.330
4 0.360
5 0.997
6 0.327
7 0.329
8 0.145
9 1.487
10 1.249

Average 0.619

Theoretical Mean Sgquared Q Estimation Error:

0>

0.490
0.654
0.304
0.602
0.587
0.172
0.235
0.543
0.456

0.610

0.465

8((5)

0.
0.
0.
0.
0.
0.
0.
0.
0.

0.

444
686
302
544
511
173
236
607
553

577

0.

463

Monte Carlo Run 6

%0
0.0405
0.0648
0.0263
0.0504
0.0472
0.0134
0.0196
0.0568

0.0514

0.0538

0.0424

Actual Mean Squared Q Estimation Error:
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°0
+1,130
-0.495
+0.076
+1.150
+1.610
-0.075
-0.051
-1.130
-1.880
+0.615

+0.095

0.189

0.191



Table 6.7 Monte Carlo Run 7:

Solution
Sample R
1 8.231
2 8.104
3 10.349
4 5.362
5 14,526
6 11.753
7 37.523
8 29.982
9 10.499
10 19.663

Average 15.599

>

11.362
9.237
8.452
7.442

14,625

10.269

16.213

16.658

12,729

12.767

11.975

Explicit Suboptimal

e(ﬁ)

12.280
9.997
9.238
7.419

13.005

10.534

19.195

16.856

11.493

12.637

12,166

>

0.674
0.447
0.373
0.190
0.748
0.510
1.380
1.140
0.596

0.716

0.671

Theoretical Mean Squared R Estimation Error:

Actual Mean Squared R Estimation Error:
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°R
-1.360
-1.700
-2.105
+0.121
+2.160
-0.520
-2.160
-0.173
+2.080
+0.182

-0.348

59.344

70.540



Table 6.7 (Continued)

Sample Q

1 3.985
2 1.677
3 0.089
4 0.002
5 2.476
6 0.923
7 0.614
8 0.906
9 2.361
1o 0.255

Average 1.329

Theoretical Mean Squared Q Estimation Error:

0>

1.285
0.844
0.707
0.503
1.895
1.064
2.183
2.321
1.556

1.509

1.387

e (Q)

1.452
1.002
0.849
0.496
1.588
1.104
2.783
2.330
1.294

1.509

1.441

Monte Carlo Run 7

0>

0.576
0.087
0.072
0.036
0.146
0.097
0,266
0.221
0.117

0.138

0.176

Actual Mean Sgquared Q Estimation Error:
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e
-0.290
-0.182
-0.198
+0.193
+2.100
-0.410
-2.250
-0.046
+2.240
+0.000

+0.116

1.817

1.566



Table 6.8 Monte Carlo Run 8§8:

Solution
Sample R ﬁ

1 1.0 1.016

2 1.0 1.034

3 1.0 1.009

4 1.0 1.026

5 1.0 0.968

6 1.0 1.005

7 1.0 0.988

8 1.0 0.970

9 1.0 1.046
10 1.0 0.977
Average 1.0 1.004

Theoretical Mean Squared R Estimation Error:

[
o

|

[
o

~

R
0.0286

g

0.0286
0.0286
0.0286
0.0286
0.0286
0.0286
0.0286

0.0286

0.0286

0.0286

Actual Mean Squared R Estimation Error:

272

Explicit Suboptimal

R
+0.560
+1.190
+0.315
+0.910
-1.120
+0.175
-0.420
-1.050
+1.610
-0.805

+0.137

.000821

.000694



Table 6.8 (Continued) Monte Carlo Run 8

Sample Q 6 e(é)
1 0.5 0.529 0.5

2 0.5 0.559 0.5

3 0.5 0.520 0.5

4 0.5 0.546 0.5

5 0.5 0.454 0.5

6 0.5 0.513 0.5

7 0.5 0.483 0.5

8 0.5 0.442 0.5

9 0.5 0.555 0.5
10 0.5 0.458 0.5
Average 0.5 0.506 0.5

Theoretical Mean Squared Q Estimation Error:

g

10>

0.046
0.046
0.046
0.046
0.046
0.046
0.046
0.046
0.046

0.046

0.046

Actual Mean Squared Q Estimation Error:
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e
+0.630
+1.280
+0.435
+1.000
-1.000
+0.284
-0.370
-1.260
+1.200
-0.905

+0.129

.002126

.001755



Table 6.9 Monte Carlo Run 9:

Sample

10

Average

Theoretical Mean Squared R Estimation Error:

Solution
R R
10.0 10.218
10.0 9.693
10.0 10.013
10.0 10.450
10.0 10.355
10.0 10.392
10.0 10.600
10.0 10.423
10.0 9.850
10.0 9.542
10.0 10.154

e(ﬁ)

10.0
10.0
10.0
16.0
10.0
10.0
10.0
10.0
10.0

10.0

10.0

o IS

0.447
0.447
0.447
0.447
0.447
0.447
0.447
0.447
0.447

0.447

0.447

Actual Mean Squared R Estimation Error:
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Explicit Suboptimal

°R
+0.488
-0.687
+0.029
+1.010
+0.795
+0.875
+1.340
+0.950

-0.335

-1.020

+0.365

.201

.139



Table 6.9 (Continued) Monte Carlo Run 9

Sample Q a
1 1.0 1.050
2 1.0 0.935
3 1.0 1,013
4 1.0 1.085
5 1.0 1.071
6 1.0 1.069
7 1.0 1.132
8 1.0 1.076
9 1.0 0.955
10 1.0 0.902
Average 1.0 1.029

Theoretical Mean Squared Q Estimation Error:

0

1.
1.0

(o}

0>

0.087
0.087
0.087
0.087
0.087

0.087

Actual Mean Squared Q Estimation Error:
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°0
+0.575
-0.745
+0.150
+0.975
+0.815
+0.795
+1.520
+0.875
-0.517
-1.120

+0.333

.00757

.00588



Table 6.10 Monte Carlo Run 10:

Solution
Sample R ﬁ
1 0.859 1.708
2 1,599 1.819
3 0.533 1.593
4 1.288 1.775
5 0.526 1.770
6 0.102 1.511
7 0.304 1.547
8 1.718 1.746
9 0.160 1.685
10 0.484 1.785

Average 0.756

Theoretical Mean Squared R Estimation Error:

1.694

e(ﬁ)

1.680
1.831
1.592
1.743
1,721
1.512
1.551
1.783

1.745

R
0.0257
0.0409
0.0169
0.0321
0.0295
0.0089
0.0128
0.0364

0.0319

0.0335

0.0269

Actual Mean Squared R Estimation Error:

276

Explicit Suboptimal

°R
+1.090
-0.294
+0.059
+1.,000
+1.660
-0.112
-0.031
-1.020
-1.880

+0.715

+0.119

1.1203

1.1249




Table 6.10 (Continued)

Sample Q
1 0.456
2 0.512
3 0.330
4 0.360
5 0.997
6 0.327
7 0.329
8 0.145
9 1.487

10 1.249

Average 0.619

Theoretical Mean Squared Q Estimation Error:

L O I

0.531
0.695
0.346
0.643
0.628

0.214

Monte Carlo Run 10

e(Q) 06

0.485 0.0404
0.726 0.0648
0.343 0.0262
0.585 0.0505
0.552 0.0472
0.215 0.0134
0.277 0.0196
0,648 0.0568
0.594 0.0514
0.618 0.0538
0.504 0.0427

Actual Mean Squared Q Estimation Error:

277

| @Y

+1.140
~0.480
+0.115
+1.150
+1.610
-0.075
-0.051
-1.110
~1.860
+0.633

+0.107

.1778

.1799



Table 6.11 Monte Carlo Run 11l:

Sample R
1 10.0
2 10.0
3 10.0
4 10.0
5 10.0
6 10.0
7 10.0
8 10.0
9 10.0

10 10.0

Average 10.0

Theoretical Mean Squared R Estimation Error:

Solution

>

15.697
1l6.060
15.729
l6.027
15.363
15.449
15.150
15.099

16.248

15.032

15.585

e(ﬁ)

15.543
15.543
15.543
15.543
15.543
15.543
15.543
15.543

15.543

15.543

15,543

o>

0.087
0.087
0.087
0.087
0.087
0.087
0.087
0.087
0.087

0.087

0.087

Actual Mean Squared R Estimation Error:

278

Explicit Suboptimal

°R
+0.378
+1.010
+0.621
+1.340
-0.183
-0.046
-0.820
-0.172
+1.030
-1.150

+0.201

30.931

31.366



Table 6.11 (Continued)

Sample Q 6

1 1.0 1.167

2 1.0 1.222

3 1.0 1.188

4 1.0 1.241

5 1.0 1.118

6 1.0 1.130

7 1.0 1.062

8 1.0 1.019

9 1.0 1.224
10 1.0 1.034
Average 1.0 1.141

Theoretical Mean Squared Q Estimation Error:

Monte Carlo Run 11

s(a)

1.1342
1.1342
1.1342
1.1342
1.1342
1.1342
1.1342
1.1342

1.1342

1.1342

1.1342

o]

0>

0.450
0.450

0.450

Actual Mean Squared Q Estimation Error:
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%0
+0.342
+1.150
+0.414
+1.070
-0.400
-0.206
-0.870
-0.986
+1.560
-1.135

+0.120

.0256

.0257



The normalized differences between the R and Q estimates
‘and their theoretical conditional means were studied using
a procedure similar to that used in testing the normalized
estimation errors of the maximum likelihood estimator. For
each run presented, the mean and variance of these normalized
differences across the ensemble of ten trials were computed.
In most cases, the computed mean and variance of the differ-
ences were within one standard deviation of their expected
values. From this it can reasonably be concluded that the
theoretical expressions for the conditional mean and condi-
tional variance of the estimate about the conditional mean
are valid.

From the Monte Carlo runs presented, it can be seen that
the theoretical results related to the maximum likelihood
solution and the explicit suboptimal solution agree reasonably
well with the actual results of the simulations. These
theoretical results predict the ensemble averages of the esti-
mation error and mean squared error., Therefore, to study
the behavior of the various estimators, Monte Carlo simula-
tions are not necessary. The following are the results of a
statistical evaluation of thé maximum likelihood and explicit
suboptimal solutions.

It has been shown that the maximum likelihood estimator
of the noise covariance parameters is unbiased for any
values of R and Q that can be encountered. The conditional

covariance of the estimates about the true values of R and

Q was shown to be
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I

cov(R, Q|R, Q) = Wn(R,Q)

The conditional average of the estimation error is zero and
is independent of the actual values of R and Q whereas the
covariance of the estimation error is a strong function of
R and Q.

Figure 6.17 shows the normalized variance of the R and
Q estimator as a function of R for a fixed Q. Figure 6.18
shows the normalized variance as a function of Q for a fixed
R. 1In both examples, the system and measurement schedule is
that given previously.

Unlike the maximum likelihood estimator, the conditional
average of the estimation error for the explicit suboptimal
estimator is a strong function of the true and a priori values
of R and Q. Figure 6.19 shows the variation of the condi-
tional average of ﬁn and‘an as a function of the a priori
estimate ﬁo' for a fixed R =1, Q = 0.5, and 50 = 0.5. It
can be seen that only when the a priori estimate of R is
exactly equal to the true value of R are the conditional
means of ﬁn and 6n equal to the true values of R and Q. This
means that if the a priori estimate of R is not equal to the
true value of R, the explicit suboptimal estimators for R
and Q are highly biased, with the amount of the bias obtained
from this graph.

Figure 6.20 shows the variation in these conditional

averages as a function of Qo’ for a fixed R=1, Q = 0.5, and
Ro = 1. The same general conclusions can be drawn from this
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graph concerning the bias of the estimator when the a priori
value of Q is not equal to the true value.

The maximum likelihood estimator of the noise covariance
parameters is slightly biased towards the a priori estimates
of R and Q when the number of measurements is small. How-
ever, it was shown that as the number of measurements becomes
large, the effect of this initial condition bias becomes
arbitrarily small. The same is not true for the explicit
suboptimal estimator. If the estimator is biased towards
the initial estimates, this bias does not necessarily decrease
as the number of measurements increases. The explicit esti-
mator is often unable to distinguish between an error in R
and an error in Q and resultingly the estimates of R and Q
may be biased no matter how many measurements are taken.

As was mentioned in Chapter 4, just because the explicit
suboptimal estimator is highly biased with respect to the
a priori estimates of R and Q does not mean that no useful
information can be obtained from them. In fact, the very
fact that they are so highly biased if the a priori estimates
are incorrect can be the basis for estimating the true values
of R and Q. As will be shown, the variance of the estimators
about the possibly biased values is quite small so that if
the estimates obtained from the explicit suboptimal estimator
differ by an appreciable amount from the a priori estimates,
there is good justification for concluding that the a priori
estimates are in error. Unfortunately, the explicit subop-
timal estimators do not provide any information concerning

how to correct the a priori values to make this discrepency
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smaller. In any actual situation, the a priori values of R
and Q would have to be adjusted in a trial and error fashion

to attempt to make the estimated values of R and Q equal to

the a priori values. The values of R and Qo which make
Rn = RO and Qn = QO to the desired degree of accuracy are

then the best estimates for R and Q.

In Section 4.4, expressions for the conditional mean
squared estimation error of the estimators for R and Q were
developed. As was mentioned, part of this error comes from
possible bias in the estimator and part comes from possible
variations about this bias. Figure 6.21 shows the variance

of the estimator about the biased values as a function of the

a priori estimates of R and Qo’ for fixed values of R and Q.

The bias can be found from the previous graphs 6.19 and 6.20.
Oé(QO) represents the variance of Q as a function of Qo for
a fixed Ro' Oé(RO) represents the variance of Q as a function

~ ~

of R for a fixed Qo' Similarly, (RO) represents the

)
variance of R as a function of RO for a fixed QO and O%(Qo)

represents the variance of R as a function of QO for a fixed

A~

R .
o
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Fig. 6.17 Variance of M. L. E. vs R

1 2 4 10 20 40 100

Fig. 6.18 Variance of M. L. E. vs Q
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6.5 Testing of Statistical Hypotheses

In Chapter 5 various techniques for testing statistical
hypotheses were described. In this section numerical results
of a simulation of these hypothesis tests are described.

As mentioned in Section 5.7, the measurement residual

k T He¥k|k-1
tests can be conducted. If the values of R and Q that are

z is a good test variable upon which hypothesis

used to compute the state estimate Xk|k—l are equal to the
true values, then the measurement residual is a zero mean

normally distributed random variable with covariance

_ T
cov(Azk|R,Q) = R + HkPk|k—lHk

~

where Azk = zk - Hk xk]k—l

However, if the measurement and driving noises are not
zero mean normal variables with known covariances, then the
measurement residuals may not be zero mean with covariance
as given above.

Two hypothesis tests were devised to test hypotheses on
the values of R and Q used to compute the measurement resi-
dual gains and to test the hypothesis concerning the unbiased-
ness of the measurement and driving noises. The first of
these two tests will now be described.

Suppose ﬁo and éo are the a priori estimates of the
measurement and driving noise covariance matrices and a
maximum likelihood estimate of the state is computed as a

function of the measurements and these a priori values of

287



~

RO and 50' In Section 2.3, the recursive equations for
computing the state estimate and its "computed" covariance
matrix are given. It was shown that only under the null
hypothesis ﬁo = R and 60 = Q does the computed covariance
matrix accurately represent the covariance of the estimation
error. It was also shown that the measurement residual has
a zero mean even under departures from the null hypothesis,

but only if Ro = R and QO = Q are the residuals at a time k

independent of the residuals at a time j, for k # j. There-
* %k
fore, with Azk =2z - Hk xk|k—l’

A*
e ( zk) = 0

*T T

*
e(bzy bzy") = k k|k-1"k

where the above conditional expected values are conditioned
upon the fact that Ro and Qo are used to compute the weighting
matrices for the measurements, whereas the true values are

R and Q. is the "true" state estimation error covar-

Py k-1
iance and is not equal to the "computed" error covariance
matrix except under the null hypothesis.

Under the null hvpothesis,

* *m .
e (Az Azj ) =0 for k # j
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Consider the variable

* *
where Bk = Ro + H P

Then under the null hypothesis, tn is a zero mean normal

random variable with covariance

n
_ _ 1 1 * *-]
cov(tn) = s(tntn) == }: E: Bk s(Azk Az.7)\/B
j=1 k=1
n
_ 1 *-] _* *-1
= a Z By = By VBy

Therefore, tn is a zero mean normal variable with covariance
I. Since each component of the vector t, is statistically
independent of any other component, an independent test of
each component is possible. Using the procedures of Section
5.4 concerning tests on the mean, a critical region (_ta’ ta)
can be defined such that under the null hypothesis, the
probability of the test variable tn being in this region is
1l - o, where o is the level of significance of the test.
Using the procedures outlined in Section 5.4, the test
variable tn can be used to test the hypothesis that the
residual is zero mean with covariance I. A failure in this

test can be caused by a bias in the measurement or driving
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*
noises or incorrect values of R and Q used to compute Bk

*
which is used to normalize the residuals Azk.

Now consider the test variable
n
2 _ *¥-1 * * *=1
Xp = E: \/Bk Azk Azk VBk
k=1

Under the null hypothesis

e(xrzl)

n
[x-1 * * %1
}: Bk e(Azk Azk ) Bk
k=1

*
Since Azk are normally distributed random variables, the

diagonal elements of xi can be shown to be independent chi-
square distributed varialbes under the null hypothesis,

with n-1 degrees of freedom. Using the procedures outlined
in Section 5.5 concerning tests on the variance, a critical
region for each diagonal element of xi can be defined such
that under the null hypothesis the probability that the test
variable lies within this critical region is 1 - a, where a
is the level of significance of the test. The test variable
xi can then be used to test the hypothesis that the residuals
are zero mean normally distributed random variables with
covariance B;. A failure of this test can be caused by a
bias in the measurement or driving noises or incorrect values

*
of R and Q used to compute Bk'

Table 6.12 shows the results of such tests of hypotheses
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on the values of R and Q. Shown are the true values of R
and Q along with the a priori values of R and Q which were
used to compute the proper test variables. The two columns,
M-fail and S8-fail, indicate whether or not the mean and
variance test variables failed the appropriate test on the
5, 10, and 20 percent levels. A "1" indicates a test
failure and a "0" indicates a passing test.

As can be seen, the mean test was not highly sensitive
to departures from the null hypothesis on the values of R
and Q. Only in extreme cases did the mean test fail, and
then only on the 10 and 20 percent levels.

However, as would be desired, the variance test was
very sensitive to moderate departures from the null hypo-
thesis, thus indicating a powerful test of the hypothesis.

Another series of hypothesis tests was conducted to see
if the above hypothesis tests could detect a bias in either
the measurement or driving noises. In Chapter 2, it was
shown that maximum likelihood state estimation can be adverse-
ly affected if it is assumed that the measurement and
driving noises are zero mean, when in fact they are not zero
mean. For this test, it was assumed that the measurement and
driving noise covariance matrices were precisely known, but
there was a bias in either of the two noises. 1In other words,
hypotheses on the means of the measurement and driving noises
are being tested. The results of these tests are shown in
Table 6.13. BV is the actual measurement noise bias and gv
is the hypothesized value of the measurement noise bias. B

~

is the true driving noise bias and Bw is the hypothesized
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value of the driving noise bias. The system and measurement
schedule are those given previously.

The variances of the measurement and driving noises
about any possible biases were 10 and 1 respectively. It
would be expected that only when the biases are comparable
to the standard deviation of the noises would the tests
indicate a failure., This was indeed the case. As can be
seen, the mean test was somewhat more powerful in detecting
departures from the hypothesis about the noise biases, but
because of the non-independence of the tests, the variance
test also indicated failure if the difference between the
true bias and the hypothesized bias was sufficiently large.

These hypothesis test runs are not meant to be all
inclusive but rather indicate that with only a moderate
expenditure of computation, powerful tests on hypotheses
concerning the unbiasedness and covariance of the measurement
and driving noises can be implemented. The tests do not
tell why the particular test failed, but they do indicate
that one or more of the underlying assumptions about the
system or measurements is in error. The tests might also be
used to test hypotheses concerning the values of certain
elements of the transition matrices, measurement matrices Hk’
or any other parameter which is used to describe the system.
These runs are merely meant to test the feasibility of using
hypothesis tests in real time to indicate a failure of certain
assumptions about the environment under which the estimation

process is taking place.
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Table 6.12 Hypothesis Test Run 1l: R and Q Test

R R 9 0 s "I 20 5 S—igil,zo
10 1 1 1 o 0 0 101 1
10 5 1 1 o o0 0 11 1
10 10 1 1 o 0o o0 0o 0 0
10 20 1 1 o 0 0 101 1
10 100 1 1 o 1 1 101 1
10 10 1 0.1 o 1 1 101 1
10 10 1 0.5 o 0o o0 o o 1
10 10 1 1 o 0 0 o 0 0
10 10 1 2 6 o0 0 1 1 1
10 10 1 10 o o0 0 11 1

Table 6.13 Hypothesis Test Run 2: Noise Bias Test

Bv Ev . Bw gw 5 M-ggil 20 5 S-igil 20
10 0 1 1 0 0 0 0 0 0
10 5 1 1 0 0 0 0 0 0
10 10 1 1 0 0 0 0 0 0
10 20 1 1 1 1 1 0 0 0
10 100 1 1 1 1 1 1 1 1
10 10 1 0.1 1 1 i 0 0 0
10 10 1 0.5 1 1 1 1 1 1
10 10 1 1 0 0 0 0 0 0
10 10 1 2 1 1 1 1 1 1
10 10 1 10 1 1 1 1 1 1
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Chapter 7

CONCLUSION

7.1 Summary of Results

The technigue of maximum likelihood estimation has been
shown to be effective in estimating the state and statistics
of the measurement and driving noises in a linear dynamical
system observed by linear noisy measurements. Theoretical
and empirical results indicate that the estimator of the noise
covariance parameters is asymptotically unique, unbiased,
consistent, and efficient. However, the solution of the
likelihood equations for the state and noise statistics
generally requires considerably more computation than that
normally involved in estimating the state of the system when
the noise statistics are presumed known. For this reason
the optimal procedures requiring an iterative solution of
the likelihood equations will probakly find their greatest
application in data reduction rather than real time estimation
problems.

In many cases, a linearized solution of the likelihood
equations is quite adequate and can be used if a real time
solution of the estimation problem is required. Of the sub-
optimal techniques studied, the linearized maximum likelihood
solution is the only generally applicable technique that is
effective for the real time estimation of the state and noise

covariance parameters. The other techniques for estimating
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the noise covariance parameters are either biased with
respect to the initial estimates of the parameters or result
in possibly non-unique solutions.

Any technique for the estimation of the noise covariance
parameters requires some additional computation., Therefore,
before any estimation of these quantities is undertaken,
there should be some indication that the a priori values are
sufficiently in error to substantially reduce the effective-
ness of the state estimation procedure. It has been shown
that there are several techniques for testing certain hypo-
theses concerning the values of the noise statistics which
allow a decision to be made concerning the correctness of

the a priori estimates of these parameters.

7.2 Suggestions for Future Study

In Chapters 3 and 4 techniques for the estimation of
noise covariance parameters were developed under the assump-
tions that the measurement and driving noises were independent
zero mean normally distributed random variables with diagonal,
time invariant covariance matrices. These assumptions were
made to simplify the estimation problem while not overly
restricting the applicability of the solution. However, the
techniques discussed can be extended to include cases when
these assumptions are not valid. A similar structure of the
problem must be retained so that definitive results can be
obtained. That is, the dynamics of the state dre still
described by a linear differential or difference equation

with normally distributed driving noise and the measurements
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are linear functions of the state with additive normally
distributed measurement noise. In this section, the follow-

ing cases will be briefly studied:

1) non-diagonal noise covariance matrices
2) time varying noise covariance matrices
3) estimation of more general parameters, such as

elements of the state transition matrix

Possible extensions of the explicit suboptimal estimator
will be discussed first.

The extension of the explicit suboptimal estimator to
the case of non-diagonal noise covariance matrices is straight-
forward. 1In the expressions of Chapter 4 for estimators of
the diagonal elements ﬁgj and égj, all that need be done is
change the indices to ﬁgk and 6gk with appropriate changes in
the indices appearing on the right hand side of these equa-
tions. The expressions for the conditional and unconditional
means of the estimators can easily be modified to include
this generalization. However, extension of the expressions
for the conditional and unconditional mean squared error of
the estimators would be exceedingly difficult.

The case of time varying noise covariance parameters is
considerably more difficult to treat. If it is assumed that
R and Q vary slowly with time compared to the rate of data
accumulation, then the total estimation time can be broken
into segments and an independent estimate of R and Q obtained

from the data gathered in each time segment., Alternatively,
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a different weighting of the measurement data could be
proposed such that data taken in the distant past is essen-
tially not used in the estimate of the covariance parameters.
A third procedure could be used to model the noise covariance
parameters in a way described by Smith and outlined in
Chapter 4., In that case, the noise covariance parameters are

assumed to be of the form

n nom
n

where Rnomn is some nominal value of the measurement noise
covariance at time n and k is an unknown time invariant
precision factor associated with Rn' A similar equation
could be used for the driving noise covariance matrices.
The estimation .problem is then reduced to estimating certain
constants associated with each unknown noise covariance
parameter. Any more general time variation of the noise
covariance parameters than those outlined above cannot be
adequately treated using the explicit suboptimal estimator.

There is no real possibility that the explicit estimator
can be used to estimate more general parameters of the system
or measurement. The estimation equations were derived with
the particular goal of estimating the measurement and driving
noise covariance matrices and accordingly cannot be modified
to include the estimation of other system parameters.

The technique of maximum likelihood offers a procedure

and formalism within which any of the extensions mentioned

above can be handled. The resulting equations may be so
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complicated that a solution may not be practical, but at
least the equations for an optimal solution of the problem
can be derived.

If the measurement and driving noise covariance matrices
are not assumed to be diagonal, then additional likelihood
equations must be derived for estimating these off diagonal
elements. This can be done quite easily. In addition to the
likelihood equations for the state and diagonal elements of
R and Q, one additional equation is needed for each off diag-
onal element of R and Q that is to be estimated. This

equation has the form

8Ln(R,QIgn,Zn)
5RIK

R>R
AN
08

X X
n “nln

with a similar equation for the off diagonal elements of Q.
Ln(R,Q,xn,Zn) is the logarithm of the appropriate likelihood
function as derived in Chapter 3. The choice of likelihood
functions is determined by whether a priori information about
the noise covariance parameters is to be utilized.

As was the case of the explicit suboptimal estimator,
the case of time varying noise covariance parameters is more
difficult to treat. Again if it is assumed that the time
variation is slow, then the total estimation time can be
divided into segments and an independent estimate of the noise

covariance parameters obtained assuming that R and Q are
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essentially constant over this time segment. Of course, the
time segment over which R and Q are constant must be long
enough to allow sufficient information to be gathered to
obtain a reasonably good estimate of R and Q.

Alternatively, if the noise covariance parameters are
assumed to change with time in a deterministic manner as
proposed by Smith, the technique of maximum likelihood can
easily be applied to estimate the value of the unknown
precision factors kj, with a separate precision factor
associated with each unknown element of R and Q. In this
case, the likelihood function can be thought to be a function
of the parameters kj rather than Rn and Qn' For each kj, an

equation of the following form must be solved.

1 m
?Ln(k reesK ,xn,Zn) .
3k ~
X X
n - nin
k-+k

where here it has been assumed that there are m such preci-
sion factors. The solution of this equation can be obtained
in a manner entirely analogous to the solution for the time
invariant covariance parameters discussed in Chapter 3.
There is also the likelihood equation associated with the
state X which must be solved simultaneously with the like-
lihood equations for the parameters kj°

Much more work needs to be done in the area of maximum
likelihood estimation when the time variation of R and Q is

more complicated than the cases given above. It is felt
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that there is much promise of obtaining an optimal solution
to the problem. Such a solution might proceed along the
following lines.

Let En represent the vector of diagonal elements of the

noise covariance matrices at time n.

T .11
£ = (R

11
n RV, 0% 000

Let En_ be the vector of diagonal elements of these matrices

1
at time n-1, and let the relationship between En and En-l be

given by

it

£ W(n,n—l)En_l + u (7.2.1)

n
where Y(n,n-1) is the "noise covariance parameter transition
matrix" and u, is the "noise covariance parameter driving
noise." Since gn represents a vector of noise variances,
every element of En must be positive. Therefore, the distri-
bution of the noise u, must be chosen so that for any Y¥(n,n-1)

and § the elements of En are all positive. In general

n-1'
this would require that the distribution of u, be a function
of ¥(n,n-1) and gn—l' However, these problems can be

avoided if it is assumed that the elements of u are chosen
from a distribution that is independent of ¥(n,n-1) and En—l
and only allows positive values for the elements of u . Such
a distribution might be the Gamma distribution used in Chap-

ter 3. Note that this choice allows En to decrease as well

as increase from time n-l1 to time n. If on the average En
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is to be equal to gn—l’ then the parameters ¥(n,n-1) and

the distribution of un should be chosen so that

(I - W(n,n-l))Eﬁ = ﬁh
where ﬁh is the mean of the u distribution and Eﬁ is the
average value of En. If the noise un on a given trial is

less than its mean, then &n will be less than its mean value.

It might also be reasonably assumed that ¥(n,n-1) is
a diagonal matrix so that if the elements of u, and gn—l are
mutually independent, the elements of En will also be
independent.

If ¥(n,n-1) is a zero rhatrix, then En is completely
independent of En—l’ whereas if u is not present, &n is a
deterministic function of En_l. All other cases between
these two extremes can be handled by appropriate choice of
¥(n,n-1) and the parameters of the distribution of u - It
can be shown that if En—l and u have a Gamma distribution
and are mutually independent, then En has a Gamma distribution.

It is desired to estimate the values of En and X, given
the measurements Zn. The appropriate likelihood function to

maximize would be
L, /% ,2.) = f(an,xnlzn) (7.2.2)

where f(En,xnIZn) is the conditional probability density

function of En and X given the measurements Zn' The choice
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of the proper likelihood function is not as obvious in the
case of time varying noise statistics as was the case when
the statistics were assumed to be time invariant. Two other
possibilities will be discussed subsequently.
From Bayes' rule,
f(gn'xn'zn'zn-l)

f(En,xnIZn) = f(zn’zn-l) (7.2.3)

£ (an Zn—l'xn’gn) f (gn’xnlzn-l)
f(zn]Zn—l)—

P f(z_,Z ' X&)
_ n’"n-1""n'"n
where f(z |2 __;) 'J[[ £z dg  dx_

= Jgf £z |2, _q,x 08 £(x ,E [2 ;) dg_ dx = (7.2.4)

Then the logarithm of the likelihood function is

Ly(E % ,2) = In £(& ,x [|2)

In £(¢ ,x |Z _;) + 1n f(znlzn_l,xn,gn) (7.2.5)

n

- 1n f(znlzn_l)

The gradient of Ln with respect to the parameters to be
estimated is then

3L,  3ln f(gn,xnlzn_l) 31n f(zn]zn_l,xn,gn)

o - ) + 5o
n n

n

(7.2.6)
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T _ T T
where a = (xn, €n)-

The density function f(anZn_l,xn,gn) is easily found.

1 o To-l,
£(z_|2 x E ) = 1 o E(zn hnxn) Rz, o)
-1’ 4 2 1/2
n'“n-1""n’"n (ZW)Y/ anI /

(7.2.7)

The real difficulty comes in finding the density function
f(En,xnIZn_l). It can be obtained, at least in theory, from
previously obtained density functions. If it is assumed that

initially En and x are independent, then

(e ,x ) = £(x,) £(E)

where f(xo) is the a priori probability density function of
the initial state and f(Eo) is the a priori probability densi-
ty of the initial wvalue of Eo’ both of which are presumed to

be known. Then before the first measurement,

£(Ey,x) = £(x;]|&)) £(E7)

Assuming f(xo) is a normal density function with mean X

o
and covariance Polo’ it is easy to show that
1 o T_ -1 o
£ e |E2) 1 7™ X110) P1)o*17%1 0]
1'°1 (2ﬂ)B/2|P II/Z
l|o (7.2.8)
where Xl|o = <I>(l,0)xo|O
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T

P 1

1o = (1,0 By, 7(1,0) + T o T
Assuming the model for En previously given, f(El) is a
Gamma probability density function with known parameters.

Then using (7.2.3) with (7.2.4), (7.2.7), and (7.2.8), the
density function f(&l,xllzl) can be found. In most cases,
evaluation of this density function will be very complicated
but it can be performed in theory.

Once the necessary density functions in (7.2.5) are
found, then the estimates of gn and X, can be found by finding
the zero points of the likelihood equations (7.2.6). Some
iterative procedure will be needed for the solution of these
equations.

Assuming that a solution of the likelihood eguations
can be found, much work needs to be done to determine if such
a solution is unique and if it is, what are its asymptotic
properties. The situation is much more complicated than the
case when the noise covariance matrices were assumed to be
time invariant. If the noise covariance parameters change
rapidly with time and are not sufficiently correlated with
past values of the noise parameters, then there may not be
sufficient information in the measurements to uniquely define
the estimates. In such a situation, the maximum likelihood
estimator may be required to estimate the value of the noise
parameters essentially on the information contained in a
single measurement. If the measurement is of small dimension

compared with the number of parameters being estimated, there
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may be insufficient information in the measurement to estimate
the noise parameters. This is not a shortcoming of this
particular type of estimation, but rather a fundamental problem
of trying to estimate the value of a quantity with insuffi-
cient information. A similar problem was encountered in
Chapter 2 when the state of the system was being estimated
without prior information. Until sufficient information was
gathered, a unique state estimate could not be defined.

Assuming that a unique solution to the problem exists,
finding its asymptotic properties will be difficult. How-
ever, it should not be expected that the estimator for En is
a consistent estimator when there is "noise" driving the
vector of noise covariance parameters. This is entirely
analogous to the fact that a Kalman estimator for the state
is not consistent when there is noise driving the state,
or in other words, the covariance of the estimation error
does not go to zero as the number of measurements goes to
infinity. Therefore, it can be anticipated that the maximum
likelihood estimator of the state which uses estimates of &n
to compute the appropriate filter gains will not converge to
the estimates that would be obtained if the noise covariance
parameters were known precisely. However, if the noise
covariance estimator operates properly, this difference may
be small.

As was mentioned previously, the likelihood function
given above is not the only possibility that might be

~~ngidered. Another solution to the problem might be found
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by simultaneously estimating the state X and the values of
the noise covariances at all times up to and including time

n. In such a situation, a likelihood function of the form
1(Eqre vl sX ,2) = f(gl,..,gn,xn[zn) (7.2.9)
might be chosen. Define
T T
Q- = (gl,...,gn)
Then by Bayes' rule
£(Q,,x 12) = f(xn|Qn,Zn) f(inzn) (7.2.10)

f(xnlﬂn,zn) is the probability density function of the state
given the measurements Zn and the values of the noise covari-
ance parameters at all times. From Chapter 2,

T =1 o

) Pn[n(xn xn|n)

1 2°n “n|n
,1/2

f(x_|Q_,2_) =
n'n’’n (2m) B/2|p

n|n (7.2.11)

~

where x is a function of Z_ and Q_, and P is a function
n|n n n nin

of Q .
n

By application of Bayes' rule,

f(inzn) = f(g_,Q vZ_q)

n n—l’zn
f(zn,Zn_l)

n-1
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fgznlgn,zn_l) £(Q,,2, ;)

= fizf_‘_mn_fzn‘_l_) f(gnlﬁn—l’zn—l) f(Q
f(zn[zn_l)

n-11%n-1

Repeating the above procedure, it is easy to show that

n f(z.|9.,,%2. ,) £(&.|9 1,2, ;)
fo lz) = £6) T - 5 Mgy
noon ° i=1 Z231%3-1

f(EO) is the a priori probability density function of the
initial value of the noise covariance parameters. It is easy

to show that

o T, -1

1
_ 1 "5z mHiXg o) By (2 mH X 5 )
f(z,|9,,2, ;) = — e
ittirfi-1 (ZW)Y/2|B |l/2
i (7.2.12)

T
where B. = R, + H.P.,. H,
i i itili-1741

xi]i—l is the maximum likelihood estimate of X, after i-1

measurements using the true values of Qi to compute the proper

filter gains, and Pi]i—l is the conditional covariance of X,

about Xi|i—l'

From the model of &, it can be seen that f(&iIQi_l,Zi_l)

is a Gamma probability density function with conditional mean

s(€i|Qi_l,Zi_l) = ¥(i,i-1) &, _; + uy

where Ei is the mean of the distribution of noise covariance
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parameter driving noise. The conditional covariance of the

distribution is
cov(£i|Qi_l,zi_l) = cov(ui)
In obtaining these expressions, use was made of the fact
that u, is independent of z; ; and 2, ;. f(zi|Zi_l) need
not be evaluated since it is not a function of x or Qn.
The logarithm of the likelihood function (7.2.9) is

L (2 ,%x_ ,Z ) = 1n f(xnIQn,Zn) + 1n f(inzn) (7.2.13)

and the gradient of Ln with respect to the parameters to be

estimated is

3L 31n f(x_|9 _,2 ) d3ln £(Q_|2Z_)
3 = b_n n oy n_n (7.2.14)
aa o0 Yo} e
n n n
T T T . . . .
where now an = (xn, Qn). The maximum likelihood estimate of

o is the value of o which makes all components of (7.2.14)
zero. From an examination of (7.2.14), it can be seen that
the estimate of the state X, is just the maximum likelihood
state estimate which uses the estimates of Qn to compute the
proper filter gains. The estimates of Qn are found from the
solution of the likelihood equations associated with the
gradient of the likelihood function with respect to Qn.
It should be noted that finding the necessary density

functions in this likelihood equation is considerably easier
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than finding the density functions in the previous likelihood
equations (7.2.6). However, it should also be noted that the
number of likelihood equations that must be simultaneously
solved is much larger than in the previous case. 1In addition
to the likelihood equation associated with the state, there

is one likelihood equation associated with the value of g, at

every measurement time. Thus as n becomes large, the number
of likelihood equations also becomes large.

A third possibility for likelihood function would be
1(xn,zn) = f(xnlzn) (7.2.15)

In this case, only the state is to be estimated, not the

values of the noise covariance parameters. However, it will
be shown that finding the above probability density function
is even more difficult than in the previous two cases. From

Bayes' rule,

f(xn,Zn)
f(Xn|zn) - f(Zn5

f f(x 128 )
,[ f(z 44,
jé[ f(xnIZn,Qn) f(inzn) aq

Then the gradient of the logarithm of the likelihood function

(7.2.15) is
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3ln f(xnIZn) B (x Iz 2)
an - f(x |ZgT' J(Jr f(inZn) dQn

Evaluating this expression in a realistic situation would
be very complicated and finding the zero points of the equa-
tion would be even more involved. Thus the number of
equations that must be solved has been reduced over that of
the two previous approaches, but the complexity of the
equations is considerably increased.

In general, the state estimates obtained from the
solution of these three different likelihood functions will
be different. Which estimate is "better" depends upon what
information is desired from the measurement information.
Solution of the first problem will result in estimates of
the current state and the current value of the noise covari-
ance parameters. The solution of the second problem will
result in estimates of the current state and the values of
the noise covariances at all times. The solution of the third
problem will result only in the estimate of the state, with
no information provided about the value of the noise statistics.

The tradeoff between the number of eguations to be solved
and their complexity seems to be a general feature of maximum
likelihood estimation. As the number of parameters to be
estimated increases, there are more equations that must be
simultaneously solved, but it is usually easier to find the
necessary probability density functions.

Maximum likelihood estimation can be used to estimate

more general parameters of the system and measurement than
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the statistics of the noises. These problems can be handled
within the framework of the maximum likelihood estimators
already developed. The likelihood functions of Chapter 3
were written as functions of the state X the measurements
Zn' and the parameters R and Q. In fact, the likelihood
function is a function of all parameters of the system,
namely the state transition matrix, forcing function matrix,
and the observation matrix. The dependency of the likeli-
hood function on these additional parameters was not indicated
because it was previously assumed that the parameters were
known precisely. Now it is assumed that some of these para-
meters are not known precisely a priori, but rather knowledge
of them is described by some a priori probability density
function in a fashion similar to that used in describing the
uncertainty in R and Q.

Let B represent the vector of any additional parameters
of the problem that are to be estimated. For simplicity it
is assumed that B is time invariant. The likelihood function

appropriate for this problem is

1(R,Q,x ,Z B) = £(R,Q,x ,B8|2 ) (7.2.16)
where f(R,Q,xn,BIZn) is the joint conditional probability
density function of the parameters R,Q,xn, and B given the

measurements Zn' From Bayes' rule

£(R,Q,x_,8l2 ) = £(x |2 ,R,Q,B) £(R,Q,B|Z ) (7.2.17)
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Then the logarithm of the likelihood function is
Ln(R,Q,xn,B,Zn) = 1ln f(R,Q,xn,Blzn) (7.2.18)

= 1ln f(anZn,RrQIB) + 1ln f(RIQIBIZn)

Then

3L 31n f(xnlzn,R,Q,83

o Y (7.2.19)
n n

But the zeros of the likelihood equations (7.2.19) can be

shown to occur when

~ N ~

xn > ann(Rlenr Bn’zn)
This says that the estimate of X is just the maximum likeli-
hood estimator of the state that uses estimates of R, Q, and
B to compute the proper filter gains. Estimates of R and Q
are found in the same manner as in Chapter 3. Estimates of

B are found from the solution of the additional likelihood

equations

The likelihood equations for the state X s the noise covari-

ance parameters R and Q, and the additional parameters B
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must be solved simultaneously, this generally requiring an
iterative solution.

Thus it can be seen that more general parameters can be
estimated in the same way as the noise covariance parameters,
except that for each additional parameter to be estimated,
an additional likelihood equation must be solved.

As in the case of time varying noise statistics, much
work needs to be done concerning the asymptotic properties
and possible convergence problems associated with the esti-
mation of these additional parameters.

One final word should be said about the application of
maximum likelihood estimators of the state and noise statis-
tics in problems when there may be errors in the dynamical
model of the state. Jazwinski has shown that the effects of
these modeling errors can often be characterized as an addi-
tional noise driving the state, where the statistics of this
noise are unknown. If a maximum likelihood estimator of the
mean and covariance of the "effective driving noise" is
employed, there is good reason to believe that the perfor-
mance of the state estimator can be considerably improved.

In such cases, the estimates of the statistics of the noise
may have little physical significance, since there is actually
no "modeling error noise" driving the state. However, if the
effect of the modeling errors can be accurately represented
as such a noise, then estimating the statistics of this noise
can improve the state estimation and minimize possible diver-

gence problems within the filter.
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Appendix A

MATRIX AND VECTOR OPERATIONS

A.1 The Generalized Inverse

The generalized inverse is an important concept in
matrix theory because it provides an extension of the concept
of an inverse which applies to all matrices. Deutsch, Rao,
and Rust discuss the theory and application of the generalized
inverse in such problem areas as numerical analysis and
least squares estimation. This appendix closely follows the

work of Deutsch.

The generalized inverse of an m x n matrix A of rank r

#

is a n x m matrix A" of rank r such that

A A" A=A (A.1.1)

# T #

If A = 0, define 0" = 0°. Both A"A and A A# are idempotent

because they are equal to their squares.

(a*a)2 = a%a a%a = a

#)2 # #

I
>
i
o
N

I
N
=

(A A

If A is of rank r > 0, then it has a rank factorization

of the form
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where B is a m X r matrix and C is an r x n matrix with the
rank of both B and C equal to r.
The pseudoinverse of a matrix, often called the Moore-

Penrose generalized inverse, is defined as

1 1l T

cTiech™t Tt B (A.1.2)

>
I

with 0 =20

A pseudoinverse is a generalized inverse because (A.1l.2) can
be shown to satisfv (A.1.1l). If A is nonsingular, then
at = af = a7l

There are several advantages for employing the pseudo-

inverse rather than the more inclusive generalized inverse.

These stem from the following properties:

1) The pseudoinverse of a pseudoinverse yields the
original matrix. That is (A+)+ = A
+ . .
2y (A A+) and (A A) are symmetric matrices.

3) The pseudoinverse of a matrix is unique.

Rust discusses an algorithm suitable for digital computer
operation for finding the generalized inverse of a matrix.
However, in certain special cases, the solution can be obtained
directly.

If (ATA) is of full rank then

at = (ATA)-lAT
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If (A AT) is of full rank then

+ 1

at = aT(a aT)~

A.2 The Matrix Inversion Lemma

If A; is a n X n nonsingular matrix, A, is anxm

matrix, A3 is a m x m nonsingular matrix, and A4 is a
m x n matrix, then
1 -1,-1 -1

A2(A4Al A2 + A3 ) A A

1 -1 1

(Al + A2A3A4) = Al - Al

The proof is by direct substitution.

A.3 Matrix and Vector Derivatives

Certain matrix and vector identities are needed in the
main text. The purpose of this appendix is to derive the
general results applied there. The following notation is used

here:

X a n x 1 column vector
L(x) a scalar function of the vector x and possibly
other parameters
amzxmmatrix
Y the inverse of Y
| Y| the determinant of Y

1

U the cofactor matrix of Y such that Y = = UT/IYI,

where UT is the transpose of U.
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3L (x) [BL oL AL ]
= |2, "= eee, T=— a l x n row vector
ox axl sz P
521, 521, 521,
Bxlaxl szaxl anaxl
BZL(X) . a n x n symmetric
9X 09X . matrix
521, 521, 521,
§x18xn axzaxn axnaxn
1 8|Y _ -1, 7T
U 2 A
Proof: By the cofactor expansion of the determinant of Y,
m
ly| = E: Yo Uiy for any i
k=1
0 5y 53U
8]Y| _ ik ik
Then Y., E: 57, Uik t Yikx 37,
B E o T P 3%
By definition U (—l)i+k M
ik ik

where Mik

is the minor of Yik which is found by evaluating

the determinant of the matrix obtained by deleting the row

and column containing the element Yoo

definition,

Uik
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Thus from this

is not a function of Yik and



¥y
3%,

So _B.-I_Y_J-= Z
Y.
JjL

m
k=1

m
Uix = E: %15 %xp Uik T Uyy
k=1

where aij is the Kronecker delta defined by

éij =0 i # 3
1 93|y 1 1
Then T 3v,, - TeT Use T Y gy
J2
1 23|y -1
ox T S = h”
2. By entirely analogous procedures it can be shown that
1 3|v+B| _ -1.T
[T+B] oy - L(¥#B) 7l

where B is any matrix that is not a function of Y.

3. Let Y be a function of a matrix Z. Then
| -— Y.
1 3|y] _ © % 1 3]y] ik
=,
¥l 9z5, Lo T 3y, 525,
i k
VAN ki az.z
i ok J
= Tr(y 1 BSY )
32

where Tr( ) is the trace of the enclosed matrix.
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4, By analogous procedures it can be shown that

1 3ly+B] _ Tr VY+B)_1 8(Y+B)]

[TFBT 9%, 373,

where both Y and B may be functions of Z.

5. Let a and b be any constant m x 1 column vectors. Then

T oY

3(a”Y b) _ E: ik _ E:

—ov., L a, 37 P T L Ej a; by Syg 845
J i k ] i k

= a.b
J

£
T
3(a’Y b)) _ T
Or ———W——ab
6. From the fact that Y Y ¥ = I, it can be shown that
-1
jL je
5y L -1 Y -1
Therefore = - Y — Y
97 . 27 .
J2 jL
5 (aTy 1p) T -1 3Y -1
7. 7 = - a ¥ Y b
% 2

If Y=A2ZB + C, where A, B, and C are constant matrices,

T -1
3(a Y "b) _ _ T 1, 32 5yl
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Or

3 (a

Y—lb)

02
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Appendix B

EVALUATION OF EXPLICIT ESTIMATOR MEAN SQUARED ERROR

In Section 4.4 expressions for explicit estimators of
the diagonal elements of the measurement and driving noise
covariance matrices were developed. Also evaluated were the
conditional and unconditional means of the estimates and the
conditional mean of the squared estimation error. In this
appendix the unconditional mean of the squared estimation
error is obtained.

From (4.4.16) the conditional mean of the squared R

estimation error is

233 _ p3dy2y - R3J3 jj, 2
e[ (R r1)2) = ¢J3 + @I (B.1)
where cJi = (n=L 2e39 + 2 ((R+ AF. - BHP  BHINH2Z (m.2)
n n n-1 " 2 n n nin"n .
n
F =+ }Z AF (B.3)
n n k *
k=1
_ * T _ * _ *p T
AFn = Hk (Pk|k + Pklk)Hk HkAkR R.Ak Hk (B.4)

The unconditional mean of the sgquared estimation error

is then

33 _ rI3)2] = g(aI3 33,2
el(RJT - ®10)?%) = B6)N) + ELEFIHY (B.5)
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. 2
But E(ng) = lgii) E(ijl) + = E[((R + AF_ - H P*|’H y33) 24

n nnnn
Define a:?n - (HnPn|n n)jj = hJT n nhl?.l
where hg is the jth column of Hg.
Then E[((R + AF - H D |nH )jj)zl = (Rjj)2 + E[(Ang)zl (B.6)
+ (a;?n)z + 2 E(RjjAng) -2 E(Ang)a;?n -2 ;Ejla;?n
where R3J = g(rRIY) ana (@392 = 5[ (®1T)?

Tt is assumed that the a priori values of R and Q used
to compute all starred quantities are equal to the means of

their respective distributions. Or

= >
l
j2e]

and Q = Q

n|n E(P |n) Paln

and also E(AFn) =0
Define aJ = (H_P H )jj = nl7T h’
n|n n njn n n “n|nn
. x4 * 33
Then AFII = &) + a ? - 2 a T R -
n n|n nin nln —
K




and E[(AFJJ) ] = E([anl 2] - (a*?n)2

n n
4 a3 i3
a v ks I
_ % 2n]n [E(an[nR]J) - an] 7 - E: nin]
rIJ
I 33 _ 39,2 -
where X. = E[(R - rR7J) ]ij a diagonal matrix
R
Define vJ, =g _, rR -5, rII
nin n|n n|n

n nln n

.
o 2 xs o [4 a;Jn . 35 anin
Then E[(AF3))?] = E(al - (af y2 | nln 43 _ 5
n nln nn n —_—

(B.7)

E[(a ) ] and d% must now be computed. Using (2.3.43) and

n|n
(2.3.44) it can be shown that

n

_ 7 & * kT T, LT
Poin = *aloPolo *nlo * >L. Anlk(AkRAk + DI O DAy

A *
where Dk = (I - Aka)
A - - -
Xn|k = Dn d(n,n l)Dn_l ®(n-1,n 2)...Dk+l ® (k+1,k)
. A
with )\klk = I
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n
jT j _ 37T T 7 Z jT J
Then hn P nhn = hn AnIOPOIO;\nthn + ' hn A AkRAk )\nlkhn
k=1
n
Ty J
+ X hJ |kaerrkxn|kh
k=1
(A ThT ndyt AT HTy%
But k n|k a) (Ak n|k n
T T T v 4 T T 23
(F nlkh )7 = (F 'k )
jT T j_ js s T T
_ * 50,2 L8
Similarly
T T j jL,2 L
hn AnIkaFkQF Dk I h ((F D IkH ) ) (Q)
n
. JL jL, 2 .
Define ( n|l) = Ei ((H A nlk k) ) a y X y matrix
k=1
n
i _ X jL, 2 .
(Ln]l) ((H An]kD ) ) ) a vy x n matrix
k=1
e’ = hJTA P T- hJ a scalar
n|lo n “njo o]o njo n
rd = (R)Jj ay x 1 vector
gl = (9)I’ an x 1l vector
jT Jjo_ " J
Then hn Pnlnh enlo + (Cnll r + Lnll q) (B.8)
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Squaring (B.8), performing the unconditional expected value,

"o
then subtracting the square of an?n’

2, %2 T 3]
E[(a‘nln ] (anTn) nll Z h |l + Lnll ZQ Lnll)
ik R —= 5
where Ej = E[(Q:’:j - QJJ) ]ij a diagonal matrix
Q

In obtaining this expression it was assumed that R and Q are
independent random variables and that eglo is not a function
of R or Q.

By a similar procedure it is easy to show that

. .. k)
J _ " JJ

dn - (Cnl l) ZR
-
. a I

. jk _ jk _ nin
Define (C'll) = ( nll) 2 — ij

rJJ

Then (B.7) becomes

33y 2 ' T T 37
E[(AF2-) 7] (Cr'1|1 Z_R Cn|l + Lnll ZQ Lnll)

It can also be shown that

ca s - 33
JIeddy _ i3
E(RVIar)I) = (c a1’ 5
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So, after algebraic manipulation, (B.6) becomes

- * uhy3dy2y o (/33 - %32 T
E[((R + &F = HP | H)ZHT] = (R 2T} "+ Capa Z% Cn|1

T

o 33
a4 Ln|l)

Q
where Cnll = ﬁ]l + I

2
n

n-1
n

33y - 33 2 (®I - &7 T
so E(G)7) = E(G)1) + n2[(R an? A XR Cal1

T 433
I ZQ Lypa) ! (B.9)

Evaluation of E[(F%j)z] is considerably more difficult
than evaluation of E(ng) but uses a similar procedure. It
can be seen that

pld = 821 g3 1 ,pdd
n n n-1 n n

n-1

jjy2 _ [n-1 ji 2 1 jiy2 2 }j 33 j3

SO (Fn )T o= 5 (Fn—l) + = (AFn )T+ =5 AFk AF-
n n k=1

After a slight rearranging of terms and performing the above

sum to n instead of n-1, it can be seen that

. 2 s = o s s
eprldy?y = 2L ogredin?) « %[2 > Er)drdd) - E[(AFIJIJ)2]]
n

k=1

(B.10)
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After algebraic manipulation,

39,033 33 i wg o Zaglars o33 ady
E(AF ZAFZ) = Efaj |y ap ) - ak?k an:rn IS E [dk T br B33
2 a ) i3 a7
2k [dj _ 597 Zaln)
)] L' nm  Tp gIJ j

Following the same procedure as in finding E[(AFgJ)Z],

JiApddy = T T 33
E(AF PAFD°) = (Cyyy ZR Cal1 * Ix|1 ZQ Laj1)
n
Define c! =1 }: c.

n|l ~n /L k|1l
k=1
n

— 1 <

bt =& Z Lyl1
k=1

Then after algebraic manipulation, (B.10) becomes

- 2 . . .
3342 n-1 33 42 2 ' =T _ e T 433
EL(FLD) =] BLE2D % ¢ 52 oy L Ty - Sy 2 Chy)
n R R
=T _ N T JJ
+ (2 n Ln|l Z Ln|l Ln!l / Lnll) ] (B.11)
Q Q

n i -
CnIl and Lnll can be computed through a recursive rela

tionship. From the definition of C;|l’

n n

" jL _ *jzz_z T * 2.2
(Cnll) - E: ((HnAnIkAk) )T o= ((hn An[kAk) )
k=1 k=1
n
-\ jT * 9 *T T Jy\ L
L (oA AT (B AL k)
=1
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n

jym * mf *T. T fu jyu
BH™ Y g™ @AM )
k=1
. mzu - m% *T. T fu
Define ( }: (A lk k (Ak An|k)
Then e 3t = mH® @)™ @) (B.12)
n|l n n n .
n-1
mu _ N\~ * mi *T. T 2u * . mg *T. U
But (a ) =/ anlkAk) (A, Anlk) + (A)) (a,™)
k=1
and An]k = Dn d(n,n- l)An llk

miu _ _ ms sit T _ T, tu
so (o)) = (D ¢(n,n-1)) (@ _1) (¢" (n,n=-1)D )
* . ml *T, 2u
£ a)N™ @)
Therefore, (Otn)mJLu can be computed recursively and Cg,lfound
from (B.1l2). Lnll can be computed in a similar fashion.
Define
miu _ §: mg Ty Lu
k=1
jL _ jym miu jyu
Then (Lnll) (h) ™ (B) (ho) (B.13)
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st T, tu

T
(¢ (n,n—l)Dn)

miu _ _ ms
and (B.) = (b, ¢(n,n-1)) (Bn_l)

+ (DT )ml (FTDT)lu
nn nn

From (4.4.21) the conditional mean of the squared Q

estimation error is

533 _ o3dy2y - 533 Jjjy2
el(@)? - 0?9 %1 = 313 + d (B.14)
Jji _ [n-117_33 2 - p¥y33y2
where Jn = = Jn—l + ;7 ((Q + AMn Tn) ) (B.15)
* _ # * _ * #T
T = Fn(PnIn u ) ro
* - 1 * T
Un = ¢(n,n- )Pn—lln—l $" (n,n-1)
Fi is the generalized inverse of Fn’ which in

most cases is equal to

(rip y~1 T
nn n

* *_1 *_1 *

= Pa|nfn|n-1 Paln-1 ~ Pn|n-1 Paln-1 Pnln

# *
AM_ = T"(p + P
n n' nln n|n

*
+ U -U )F#T
n n n
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= - T -
u, = ¢(n,n l)Pn—lln—lQ (n,n-1)
n
_ 1
Moo= 3 ) mM

k=1

The unconditional mean of the squared estimation error

is then

e(@33 - 03%)?) = 5@l + BLI?

n-1
n

) 2 .
i3 33 2 _ m¥y3J3,2
But  E(3)7) B(I321) + 3 BLU@ + MMy = 7)) (B.16)

BL(@ + o - 3921 = (©30)2 + Erdd)?) + (2302 s
+ 2 E(ij Ang) -2 E(Amgj) T;jj -2 ij T:jj
If R =R and Q = Q, then E(AMn) = 0 and
BlC@+ am - 7302 = (@30)2 + pramd)?) 4 (72
+ 2 E(QI] Ang) - 2933 T:jj

After some manipulation, AMn can be expressed in the following

form.

_ 5 - _ = ot T
M, =0 -0+ £, I(R-R) + Hn(Pnln-l Pnln—l)Hn]f
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I .
where fn = FnAn an x y matrix
Define f% 4 the jth column of fg ay x 1 vector

gj 4 HT fj a B x 1 vector
n n n
b3 = g3Tp J 1
aln-1 7 91 Fn|n-19% a scalar
* 3 T
bn?n-l = gj nln lg a scalar
3y1y2 )
(D
DA
mg = j . : ay x 1 vector
.
((£HN2
L
33 - g33 - o3 - 3 - b*3
Then AMn =Q Q + m (r r) + bn|n 1 bn?n—l

where as before r and r are Yy x 1 vectors composed of the
diagonal elements of R and R respectively. Then, after some

algebraic manipulation, it can be shown that

33,2y _ §93 3T . 3 _ ¥ 2
E[(aMII) %] = Z@ + ZRgn + Bl 1) 2 (bnTn_l)

- 33,3 _533,*7 T 3 = ¥
2[(E(07 b7, -0 bnTn 1 + 2m)"[E(r by, 1)-F bn?n_l]
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] 2 33,3
Now E{ (b a|n- 1) 1, E(Q’“b A |n- l) and E(r bnln l) must be found.
From (2.3.43)
T %
Pn]n DPlnlD +ARA
_ -1 oo kT P-]
SO n|n-1 Dy (Pnln A RA T)D
J _jTl _**T T-1 j
and bn|n—l =9, D, (P n|n A RA,T)ID, "9
J = o pT-1.3
Oor  bijp-1 =9 D n|o o|o n|oPn 9n
n
T * kT ToTy, T pT-1_3
+ D nlk(AkRAk + D, I Q' D )Anlk a9
k=1
jT. -1 *T T-1 j

- g5 D_"A_ RA I

n
. j & N\
Define (U ;) yJ” = 2; ((g2TD lxnlkAk)l)z - ((g3Tp71a"y %2
k=1
n
' v _
IR Z (@3 M Dy Ty ™)
sj = g D l P AT T 143
nlo n]o olo*n|oPn 9n
Then bj = sj + (Ur r + w' q)j
n|n-1 nlo n|1 n|l
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From this it follows that

j 2 - *5 2 —_ " llT ] - JJ
E[(bnln—l). ] (bn?n-l) - (Un|l ZRUn|l + Wn|l LQ nll)
In a similar fashion it can be shown that
i e . 33
e¥p ) - @]y = ey T
Q
—_ %*
and E (r bjln ) - T aln-1 = (L U"'fl)
so E[(a3F)?] = ij +ml* Yy mJ + (U, Yooy, W Y wey)dd
n 0 n|l &g |1 |1 n|1l
-2 w'ji +2 @7 ¢ U"Tl)j
n 0 R
Define Wn[l = W£|l - I
jk v, yJk 3k
Then E[(aM37)?] = (u! Y ou'l, +w oWk, 33
n n|1 r Pl n|1l “ n|l

In a similar fashion it can be shown that

E (g7 Ang) = Wn|l ):
Q
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- * JJ 2 - _jj_ *JJ 2 ' W T 1 ' T JJ
So E[((Q + AMn Tn) )7 = (Q Tn ) + (Unll ZRUn|l+Wn|l ZQWnll)

2 S .
37 2 (53i_p*3iy 2 ' T J
B(Ipzy) + 0@ 7-T ") "+ (U] 4 ZRU;1|1+W1:1|1 ZQWnll)]]

and E(JJJ)
n

Using a procedure similar to that of finding E[(F%J)Z],

it can be shown that

n
33 1 3333y - 33,2
E[(M 2 21 + =l2 §j E(AMp-AM--) - E(AMZ-) “]
k=1

33,2 _ [n-1
B[ (M)7)?) -

It is easy to show that

33 33y = T T 33
E (AMp7 aM-T) (Uﬁll ZR AP ey ZQ wnll)

. 2 .
33y2; - [p=l 33 2 1 3
so L)) el G-t R IR 7 U'Il n,lzu Ty
_|T - ] IT jj
+(@n wnll > "ol ~ Yal1 L Wn]l) ]
Q Q
n
where U =1y
nll " n /L. k|1
k=1

n
— _ 1<
n|l n 2_ Will
k=

miu

" ] 3
U 11 and Wnll can be computed as functions of (an) and

(Bn)mzu. It can be seen that
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(UII )jza = (ngD—l)m (un)mﬂu (DT“l

n|l n n

' jr

Il

(ggTD—l)m (Bn)mlu

n
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